914 resultados para Internet of Energy Android Smart-M3 Stunnel OpenSSL VANET
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Nowadays it is known that the human body is continuous source of many types of energy and the devices used for collecting energy taken from the environment also have the required capabilities for the collection of the energy produced by the Human body (HB), but very limited and with very low efficiency. Low power and high yield converters are particularly needed in these cases of collecting energy from human activity and its movements due to the small amount of energy generated this way. But this situation can be improved. Enhancing or focusing the human movements by using mechanical amplifiers applied to the piezoelectric element. By doing so the input of energy in the element increases. As such increasing its output, therefore producing more energy.
Resumo:
Buildings are one of the major consumers of energy in Europe. This makes them an important target when aiming to reduce the energy consumptions and carbon emissions. The majority of the European building stock has already some decades and so it needs renovation in order to keep its functionality. Taking advantage of these interventions, the energy performance of the buildings may also be improved. In Portugal the renovation techniques, both regarding energy efficiency measures as well as measures for the use of renewable energy sources, are normally planned at the building scale. It is important to explore the possibility of having large scale interventions, has it has been done in other countries, namely at neighbourhood scale with district energy system in order to optimize the results in terms of costs and environmental impact.
Resumo:
Dissertação de mestrado integrado em Engenharia de Telecomunicações e Informática
Resumo:
Tese de Doutoramento em Engenharia de Materiais.
Resumo:
The adoption of a sustainable approach to meeting the energy needs of society has recently taken on a more central and urgent place in the minds of many people. There are many reasons for this including ecological, environmental and economic concerns. One particular area where a sustainable approach has become very relevant is in the production of electricity. The contribution of renewable sources to the energy mix supplying the electricity grid is nothing new, but the focus has begun to move away from the more conventional renewable sources such as wind and hydro. The necessity of exploring new and innovative sources of renewable energy is now seen as imperative as the older forms (i.e. hydro) reach the saturation point of their possible exploitation. One such innovative source of energy currently beginning to be utilised in this regard is tidal energy. The purpose of this thesis is to isolate one specific drawback to tidal energy, which could be considered a roadblock to this energy source being a major contributor to the Irish national grid. This drawback presents itself in the inconsistent nature in which a tidal device generates energy over the course of a 24 hour period. This inconsistency of supply can result in the cycling of conventional power plants in order to even out the supply, subsequently leading to additional costs. The thesis includes a review of literature relevant to the area of tidal and other marine energy sources with an emphasis on the state of the art devices currently in development or production. The research carried out included tidal data analysis and manipulation into a model of the power generating potential at specific sites. A solution is then proposed to the drawback of inconsistency of supply, which involves the positioning of various tidal generation installations at specifically selected locations around the Irish coast. The temporal shift achieved in the power supply profiles of the individual sites by locating the installations in the correct locations, successfully produced an overall power supply profile with the smoother curve and a consistent base load energy supply. Some limitations to the method employed were also outlined, and suggestions for further improvements to the method were made.
Resumo:
Economic development goes hand in hand with an increase in the consumption of natural resources. Some analysts use material flows to describe such relationship [Eurostat 2001, Weisz et al., 2006], or exergy [Ayres et al., 2003]. Instead this paper will use a characterisation of the exosomatic energy metabolism based on expected benchmark values to describe possible constraints to economic development posed by available human time and energy. The aim of the paper is to identify types of exosomatic energy metabolism of different societies to interpret its consequences for economic development. This is done with the application of the accounting methodology called Multi-Scale Integrated Analysis of Societal Metabolism (MSIASM) to the particular case of energy metabolism for the analysis of the economies of Brazil, Chile and Venezuela.
Resumo:
The aim of the paper is to analyse the economic impact of alternative policies implemented on the energy activities of the Catalan production system. Specifically, we analyse the effects of a tax on intermediate energy uses, a reduction in the final production of energy, and a reduction in intermediate energy uses. The methodology involves two versions of the input-output price model: a competitive price formulation and a mark-up price formulation. The input-output price framework will make it possible to evaluate how the alternative measures modify production prices, consumption prices, private welfare, and intermediate energy uses. The empirical application is for the Catalan economy and uses economic data for the year 2001.
Resumo:
In recent years there has been extensive debate in the energy economics and policy literature on the likely impacts of improvements in energy efficiency. This debate has focussed on the notion of rebound effects. Rebound effects occur when improvements in energy efficiency actually stimulate the direct and indirect demand for energy in production and/or consumption. This phenomenon occurs through the impact of the increased efficiency on the effective, or implicit, price of energy. If demand is stimulated in this way, the anticipated reduction in energy use, and the consequent environmental benefits, will be partially or possibly even more than wholly (in the case of ‘backfire’ effects) offset. A recent report published by the UK House of Lords identifies rebound effects as a plausible explanation as to why recent improvements in energy efficiency in the UK have not translated to reductions in energy demand at the macroeconomic level, but calls for empirical investigation of the factors that govern the extent of such effects. Undoubtedly the single most important conclusion of recent analysis in the UK, led by the UK Energy Research Centre (UKERC) is that the extent of rebound and backfire effects is always and everywhere an empirical issue. It is simply not possible to determine the degree of rebound and backfire from theoretical considerations alone, notwithstanding the claims of some contributors to the debate. In particular, theoretical analysis cannot rule out backfire. Nor, strictly, can theoretical considerations alone rule out the other limiting case, of zero rebound, that a narrow engineering approach would imply. In this paper we use a computable general equilibrium (CGE) framework to investigate the conditions under which rebound effects may occur in the Scottish regional and UK national economies. Previous work has suggested that rebound effects will occur even where key elasticities of substitution in production are set close to zero. Here, we carry out a systematic sensitivity analysis, where we gradually introduce relative price sensitivity into the system, focusing in particular on elasticities of substitution in production and trade parameters, in order to determine conditions under which rebound effects become a likely outcome. We find that, while there is positive pressure for rebound effects even where (direct and indirect) demand for energy is very price inelastic, this may be partially or wholly offset by negative income and disinvestment effects, which also occur in response to falling energy prices.
Resumo:
The aim of the paper is to identify the added value from using general equilibrium techniques to consider the economy-wide impacts of increased efficiency in household energy use. We take as an illustrative case study the effect of a 5% improvement in household energy efficiency on the UK economy. This impact is measured through simulations that use models that have increasing degrees of endogeneity but are calibrated on a common data set. That is to say, we calculate rebound effects for models that progress from the most basic partial equilibrium approach to a fully specified general equilibrium treatment. The size of the rebound effect on total energy use depends upon: the elasticity of substitution of energy in household consumption; the energy intensity of the different elements of household consumption demand; and the impact of changes in income, economic activity and relative prices. A general equilibrium model is required to capture these final three impacts.
Resumo:
HYPOTHESIS: Liver transplantation results in hepatic denervation. This may produce alterations of liver energy and substrate metabolism, which may contribute to weight gain after liver transplantation. DESIGN: Prospective clinical study. SETTING: Liver transplantation clinics in a university hospital. PATIENTS: Seven nondiabetic patients with cirrhosis were recruited while on a waiting list for liver transplantation. Seven healthy subjects were recruited as controls. INTERVENTION: Orthotopic liver transplantation. MAIN OUTCOME MEASURES: Evaluation of energy and substrate metabolism after ingestion of a glucose load with indirect calorimetry was performed before, 2 to 6 weeks after, and 5 to 19 months after transplantation. Whole-body glucose oxidation and storage and glucose-induced thermogenesis were calculated. RESULTS: Patients with cirrhosis had modestly elevated resting energy expenditure and normal glucose-induced thermogenesis and postprandial glucose oxidation and storage. These measures remained unchanged after liver transplantation despite a significant increase in postprandial glycemia. Patients, however, gained an average of 3 kg of body weight after 5 to 19 months compared with their weight before transplantation. CONCLUSION: Liver denervation secondary to transplantation does not lead to alterations of energy metabolism after ingestion of a glucose load.
Resumo:
This paper presents an initial challenge to tackle the every so "tricky" points encountered when dealing with energy accounting, and thereafter illustrates how such a system of accounting can be used when assessing for the metabolic changes in societies. The paper is divided in four main sections. The first three, present a general discussion on the main issues encountered when conducting energy analyses. The last section, subsequently, combines this heuristic approach to the actual formalization of it, in quantitative terms, for the analysis of possible energy scenarios. Section one covers the broader issue of how to account for the relevant categories used when accounting for Joules of energy; emphasizing on the clear distinction between Primary Energy Sources (PES) (which are the physical exploited entities that are used to derive useable energy forms (energy carriers)) and Energy Carriers (EC) (the actual useful energy that is transmitted for the appropriate end uses within a society). Section two sheds light on the concept of Energy Return on Investment (EROI). Here, it is emphasized that, there must already be a certain amount of energy carriers available to be able to extract/exploit Primary Energy Sources to thereafter generate a net supply of energy carriers. It is pointed out that this current trend of intense energy supply has only been possible to the great use and dependence on fossil energy. Section three follows up on the discussion of EROI, indicating that a single numeric indicator such as an output/input ratio is not sufficient in assessing for the performance of energetic systems. Rather an integrated approach that incorporates (i) how big the net supply of Joules of EC can be, given an amount of extracted PES (the external constraints); (ii) how much EC needs to be invested to extract an amount of PES; and (iii) the power level that it takes for both processes to succeed, is underlined. Section four, ultimately, puts the theoretical concepts at play, assessing for how the metabolic performances of societies can be accounted for within this analytical framework.
Resumo:
The link between energy consumption and economic growth has been widely studied in the economic literature. Understanding this relationship is important from both an environmental and a socio-economic point of view, as energy consumption is crucial to economic activity and human environmental impact. This relevance is even higher for developing countries, since energy consumption per unit of output varies through the phases of development, increasing from an agricultural stage to an industrial one and then decreasing for certain service based economies. In the Argentinean case, the relevance of energy consumption to economic development seems to be particularly important. While energy intensity seems to exhibit a U-Shaped curve from 1990 to 2003 decreasing slightly after that year, total energy consumption increases along the period of analysis. Why does this happen? How can we relate this result with the sustainability debate? All these questions are very important due to Argentinean hydrocarbons dependence and due to the recent reduction in oil and natural gas reserves, which can lead to a lack of security of supply. In this paper we study Argentinean energy consumption pattern for the period 1990-2007, to discuss current and future energy and economic sustainability. To this purpose, we developed a conventional analysis, studying energy intensity, and a non conventional analysis, using the Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) accounting methodology. Both methodologies show that the development process followed by Argentina has not been good enough to assure sustainability in the long term. Instead of improving energy use, energy intensity has increased. The current composition of its energy mix, and the recent economic crisis in Argentina, as well as its development path, are some of the possible explanations.
Resumo:
In this study I try to explain the systemic problem of the low economic competitiveness of nuclear energy for the production of electricity by carrying out a biophysical analysis of its production process. Given the fact that neither econometric approaches nor onedimensional methods of energy analyses are effective, I introduce the concept of biophysical explanation as a quantitative analysis capable of handling the inherent ambiguity associated with the concept of energy. In particular, the quantities of energy, considered as relevant for the assessment, can only be measured and aggregated after having agreed on a pre-analytical definition of a grammar characterizing a given set of finite transformations. Using this grammar it becomes possible to provide a biophysical explanation for the low economic competitiveness of nuclear energy in the production of electricity. When comparing the various unit operations of the process of production of electricity with nuclear energy to the analogous unit operations of the process of production of fossil energy, we see that the various phases of the process are the same. The only difference is related to characteristics of the process associated with the generation of heat which are completely different in the two systems. Since the cost of production of fossil energy provides the base line of economic competitiveness of electricity, the (lack of) economic competitiveness of the production of electricity from nuclear energy can be studied, by comparing the biophysical costs associated with the different unit operations taking place in nuclear and fossil power plants when generating process heat or net electricity. In particular, the analysis focuses on fossil-fuel requirements and labor requirements for those phases that both nuclear plants and fossil energy plants have in common: (i) mining; (ii) refining/enriching; (iii) generating heat/electricity; (iv) handling the pollution/radioactive wastes. By adopting this approach, it becomes possible to explain the systemic low economic competitiveness of nuclear energy in the production of electricity, because of: (i) its dependence on oil, limiting its possible role as a carbon-free alternative; (ii) the choices made in relation to its fuel cycle, especially whether it includes reprocessing operations or not; (iii) the unavoidable uncertainty in the definition of the characteristics of its process; (iv) its large inertia (lack of flexibility) due to issues of time scale; and (v) its low power level.
Resumo:
PURPOSE OF REVIEW: The control of glucose and energy homeostasis, including feeding behaviour, is tightly regulated by gut-derived peptidic and nonpeptidic endocrine mediators, autonomic nervous signals, as well as nutrients such as glucose. We will review recent findings on the role of the gastrointestinal tract innervation and of portal vein glucose sensors; we will review selected data on the action of gastrointestinally released hormones. RECENT FINDINGS: The involvement of mechanosensory vagal afferents in postprandial meal termination has been clarified using mouse models with selective impairments of genes required for development of mechanosensory fibres. These activate central glucogen-like peptide-1/glucogen-like peptide-2 containing ascending pathways linking the visceroceptive brainstem neurons to hypothalamic nuclei. Mucosal terminals comprise the chemosensory vagal afferents responsive to postprandially released gastrointestinal hormones. The mechanism by which the hepatoportal glucose sensor stimulates glucose utilization by muscles was demonstrated, using genetically modified mice, to be insulin-independent but to require GLUT4 and AMP-kinase. This sensor is a key site of glucogen-like peptide-1 action and plays a critical role in triggering first phase insulin secretion. PeptideYY and ghrelin target intracerebral receptors as they are bidirectionally transported across the blood brain barrier. The anorectic functions of peripherally released peptideYY may however be mediated both via vagal afferents and intracerebral Y2 receptors in the brainstem and arcuate nucleus. SUMMARY: These recent findings demonstrate that the use of improved anatomical and physiological techniques and animal models with targeted gene modifications lead to an improved understanding of the complex role of gastrointestinal signals in the control of energy homeostasis.