957 resultados para Interdisciplinary applications
Resumo:
Several series of Eu3+ based red emitting phosphor materials were synthesized using solid state reaction route and their properties were characterized. The present studies primarily investigated the photoluminescence properties of Eu3+ in a family of closely related host structure with a general formula Ln3MO7. The results presented in the previous chapters throws light to a basic understanding of the structure, phase formation and the photoluminescence properties of these compounds and their co-relations. The variation in the Eu3+ luminescence properties with different M cations was studied in Gd3-xMO7 (M = Nb, Sb, Ta) system.More ordering in the host lattice and more uniform distribution of Eu3+ ions resulting in the increased emission properties were observed in tantalate system.Influence of various lanthanide ion (Lu, Y, Gd, La) substitutions on the Eu3+ photoluminescence properties in Ln3MO7 host structures was also studied. The difference in emission profiles with different Ln ions demonstrated the influence of long range ordering, coordination of cations and ligand polarizability in the emission probabilities, intensity and quantum efficiency of these phosphor materials. Better luminescence of almost equally competing intensities from all the 4f transitions of Eu3+ was noticed for La3TaO7 system. Photoluminescence properties were further improved in La3TaO7 : Eu3+ phosphors by the incorporation of Ba2+ ions in La3+ site. New red phosphor materials Gd2-xGaTaO7 : xEu3+ exhibiting intense red emissions under UV excitation were prepared. Optimum doping level of Eu3+ in these different host lattices were experimentally determined. Some of the prepared samples exhibited higher emission intensities than the standard Y2O3 : Eu3+ red phosphors. In the present studies, Eu3+ acts as a structural probe determining the coordination and symmetry of the atoms in the host lattice. Results from the photoluminescence studies combined with the powder XRD and Raman spectroscopy investigations helped in the determination of the correct crystal structures and phase formation of the prepared compounds. Thus the controversy regarding the space groups of these compounds could be solved to a great extent. The variation in the space groups with different cation substitutions were discussed. There was only limited understanding regarding the various influential parameters of the photoluminescence properties of phosphor materials. From the given studies, the dependence of photoluminescence properties on the crystal structure and ordering of the host lattice, site symmetries, polarizability of the ions, distortions around the activator ion, uniformity in the activator distribution, concentration of the activator ion etc. were explained. Although the presented work does not directly evidence any application, the materials developed in the studies can be used for lighting applications together with other components for LED lighting. All the prepared samples were well excitable under near UV radiation. La3TaO7 : 0.15Eu3+ phosphor with high efficiency and intense orange red emissions can be used as a potential red component for the realization of white light with better color rendering properties. Gd2GaTaO7 : Eu3+, Bi2+ red phosphors give good color purity matching to NTSC standards of red. Some of these compounds exhibited higher emission intensities than the standard Y2O3 : Eu3+ red phosphors. However thermal stability and electrical output using these compounds should be studied further before applications. Based on the studies in the closely related Ln3MO7 structures, some ideas on selecting better host lattice for improved luminescence properties could be drawn. Analyzing the CTB position and the number of emission splits, a general understanding on the doping sites can be obtained. These results could be helpful for phosphor designs in other host systems also, for enhanced emission intensity and efficiency.
Resumo:
Tissue engineering has been defined as an interdisciplinary field that applies the principles of engineering and life sciences for the development of biological substitutes to restore, maintain or improve tissue function. This area is always looking for new classes of degradable biopolymers that are biocompatible and whose activities are controllable and specific, more likely to be used as cell scaffolds, or in vitro tissue reconstruction. In this paper, we developed a novel bionanocomposite with homogeneous porous distribution and prospective natural antimicrobial properties by electrospinning technique using Stryphodedron barbatimao extract (Barbatimão). SEM images showed equally distribution of nanofibres. DSC and TGA showed higher thermal properties and change crystallinity of the developed bionanocomposite mainly because these structural modification. © 2012 Elsevier B.V.
Resumo:
In addition to self reports and questionnaires, biomarkers are of relevance in the diagnosis of and therapy for alcohol use disorders. Traditional biomarkers such as gamma-glutamyl transpeptidase or mean corpuscular volume are indirect biomarkers and are subject to the influence of age, gender and non-alcohol related diseases, among others. Direct metabolites of ethanol such as Ethyl glucuronide (EtG), ethyl sulphate (EtS) and phosphatidylethanol (PEth) are direct metabolites of ethanol, that are positive after intake of ethyl alcohol. They represent useful diagnostic tools for identifying alcohol use even more accurately than traditional biomarkers. Each of these drinking indicators remains positive in serum and urine for a characteristic time spectrum after the cessation of ethanol intake - EtG and EtS in urine up to 7 days, EtG in hair for months after ethanol has left the body. Applications include clinical routine use, emergency room settings, proof of abstinence in alcohol rehabilitation programmes, driving under influence offenders, workplace testing, assessment of alcohol intake in the context of liver transplantation and foetal alcohol syndrome. Due to their properties, they open up new perspectives for prevention, interdisciplinary cooperation, diagnosis of and therapy for alcohol-related problems.
Resumo:
Purpose: Energy security is a major concern for India and many rural areas remain un-electrified. Thus, innovations in sustainable technologies to provide energy services are required. Biomass and solar energy in particular are resources that are widely available and underutilised in India. This paper aims to provide an overview of a methodology that was developed for designing and assessing the feasibility of a hybrid solar-biomass power plant in Gujarat. Design/methodology/approach: The methodology described is a combination of engineering and business management studies used to evaluate and design solar thermal collectors for specific applications and locations. For the scenario of a hybrid plant, the methodology involved: the analytical hierarchy process, for solar thermal technology selection; a cost-exergy approach, for design optimisation; quality function deployment, for designing and evaluating a novel collector - termed the elevation linear Fresnel reflector (ELFR); and case study simulations, for analysing alternative hybrid plant configurations. Findings: The paper recommended that for a hybrid plant in Gujarat, a linear Fresnel reflector of 14,000 m2 aperture is integrated with a 3 tonne per hour biomass boiler, generating 815 MWh per annum of electricity for nearby villages and 12,450 tonnes of ice per annum for local fisheries and food industries. However, at the expense of a 0.3 ¢/kWh increase in levelised energy costs, the ELFR can increase savings of biomass (100 t/a) and land (9 ha/a). Research limitations/implications: The research reviewed in this paper is primarily theoretical and further work will need to be undertaken to specify plant details such as piping layout, pump sizing and structure, and assess plant performance during real operational conditions. Originality/value: The paper considers the methodology adopted proved to be a powerful tool for integrating technology selection, optimisation, design and evaluation and promotes interdisciplinary methods for improving sustainable engineering design and energy management. © Emerald Group Publishing Limited.
Resumo:
Lanthanum phosphate is one among the lanthanide family of “Rare Earths” following the periodic table of elements. Known under the generic name, Monazite, the rare earth phosphates have melting points above 1900 °C, high thermal phase stability, low thermal conductivity and thermal expansion coefficient similar to some of the high temperature oxides like alumina and zirconia.
Resumo:
Background. Tremendous advances in biomaterials science and nanotechnologies, together with thorough research on stem cells, have recently promoted an intriguing development of regenerative medicine/tissue engineering. The nanotechnology represents a wide interdisciplinary field that implies the manipulation of different materials at nanometer level to achieve the creation of constructs that mimic the nanoscale-based architecture of native tissues. Aim. The purpose of this article is to highlight the significant new knowledges regarding this matter. Emerging acquisitions. To widen the range of scaffold materials resort has been carried out to either recombinant DNA technology-generated materials, such as a collagen-like protein, or the incorporation of bioactive molecules, such as RDG (arginine-glycine-aspartic acid), into synthetic products. Both the bottom-up and the top-down fabrication approaches may be properly used to respectively obtain sopramolecular architectures or, instead, micro-/nanostructures to incorporate them within a preexisting complex scaffold construct. Computer-aided design/manufacturing (CAD/CAM) scaffold technique allows to achieve patient-tailored organs. Stem cells, because of their peculiar properties - ability to proliferate, self-renew and specific cell-lineage differentiate under appropriate conditions - represent an attractive source for intriguing tissue engineering/regenerative medicine applications. Future research activities. New developments in the realization of different organs tissue engineering will depend on further progress of both the science of nanoscale-based materials and the knowledge of stem cell biology. Moreover the in vivo tissue engineering appears to be the logical step of the current research.
Resumo:
This text is taken from the postgraduate thesis, which one of the authors (A.B.) developed for the degree of Medical Physicist in the School on Medical Physics of the University of Florence. The text explores the feasibility of quantitative Magnetic Resonance Spectroscopy as a tool for daily clinical routine use. The results and analysis comes from two types of hyper spectral images: the first set are hyper spectral images coming from a standard phantom (reference images); and hyper spectral images obtained from a group of patients who have undergone MRI examinations at the Santa Maria Nuova Hospital. This interdisciplinary work stems from the IFAC-CNR know how in terms of data analysis and nanomedicine, and the clinical expertise of Radiologists and Medical Physicists. The results reported here, which were the subject of the thesis, are original, unpublished, and represent independent work.
Resumo:
This is a CoLab Workshop organized as an initiative of the UT Austin | Portugal Program to reinforce the Portuguese competences in Nonlinear Mechanics and in complex problems arising from applications to the mathematical modeling and simulations in the Life Sciences. The Workshop provides a place to exchange recent developments, discoveries and progresses in this challenging research field. The main goal is to bring together doctoral candidates, postdoctoral scientists and graduates interested in the field, giving them the opportunity to make scientific interactions and new connections with established experts in the interdisciplinary topics covered by the event. Another important goal of the Workshop is to promote collaboration between members of the different areas of the UT Austin | Portugal community.
Resumo:
In modern society, security issues of IT Systems are intertwined with interdisciplinary aspects, from social life to sustainability, and threats endanger many aspects of every- one’s daily life. To address the problem, it’s important that the systems that we use guarantee a certain degree of security, but to achieve this, it is necessary to be able to give a measure to the amount of security. Measuring security is not an easy task, but many initiatives, including European regulations, want to make this possible. One method of measuring security is based on the use of security metrics: those are a way of assessing, from various aspects, vulnera- bilities, methods of defense, risks and impacts of successful attacks then also efficacy of reactions, giving precise results using mathematical and statistical techniques. I have done literature research to provide an overview on the meaning, the effects, the problems, the applications and the overall current situation over security metrics, with particular emphasis in giving practical examples. This thesis starts with a summary of the state of the art in the field of security met- rics and application examples to outline the gaps in current literature, the difficulties found in the change of application context, to then advance research questions aimed at fostering the discussion towards the definition of a more complete and applicable view of the subject. Finally, it stresses the lack of security metrics that consider interdisciplinary aspects, giving some potential starting point to develop security metrics that cover all as- pects involved, taking the field to a new level of formal soundness and practical usability.
Resumo:
Protocols for the generation of dendritic cells (DCs) using serum as a supplementation of culture media leads to reactions due to animal proteins and disease transmissions. Several types of serum-free media (SFM), based on good manufacture practices (GMP), have recently been used and seem to be a viable option. The aim of this study was to evaluate the results of the differentiation, maturation, and function of DCs from Acute Myeloid Leukemia patients (AML), generated in SFM and medium supplemented with autologous serum (AS). DCs were analyzed by phenotype characteristics, viability, and functionality. The results showed the possibility of generating viable DCs in all the conditions tested. In patients, the X-VIVO 15 medium was more efficient than the other media tested in the generation of DCs producing IL-12p70 (p=0.05). Moreover, the presence of AS led to a significant increase of IL-10 by DCs as compared with CellGro (p=0.05) and X-Vivo15 (p=0.05) media, both in patients and donors. We concluded that SFM was efficient in the production of DCs for immunotherapy in AML patients. However, the use of AS appears to interfere with the functional capacity of the generated DCs.
Resumo:
The goal of this cross-sectional observational study was to quantify the pattern-shift visual evoked potentials (VEP) and the thickness as well as the volume of retinal layers using optical coherence tomography (OCT) across a cohort of Parkinson's disease (PD) patients and age-matched controls. Forty-three PD patients and 38 controls were enrolled. All participants underwent a detailed neurological and ophthalmologic evaluation. Idiopathic PD cases were included. Cases with glaucoma or increased intra-ocular pressure were excluded. Patients were assessed by VEP and high-resolution Fourier-domain OCT, which quantified the inner and outer thicknesses of the retinal layers. VEP latencies and the thicknesses of the retinal layers were the main outcome measures. The mean age, with standard deviation (SD), of the PD patients and controls were 63.1 (7.5) and 62.4 (7.2) years, respectively. The patients were predominantly in the initial Hoehn-Yahr (HY) disease stages (34.8% in stage 1 or 1.5, and 55.8 % in stage 2). The VEP latencies and the thicknesses as well as the volumes of the retinal inner and outer layers of the groups were similar. A negative correlation between the retinal thickness and the age was noted in both groups. The thickness of the retinal nerve fibre layer (RNFL) was 102.7 μm in PD patients vs. 104.2 μm in controls. The thicknesses of retinal layers, VEP, and RNFL of PD patients were similar to those of the controls. Despite the use of a representative cohort of PD patients and high-resolution OCT in this study, further studies are required to establish the validity of using OCT and VEP measurements as the anatomic and functional biomarkers for the evaluation of retinal and visual pathways in PD patients.
Resumo:
Paper has become increasingly recognized as a very interesting substrate for the construction of microfluidic devices, with potential application in a variety of areas, including health diagnosis, environmental monitoring, immunoassays and food safety. The aim of this review is to present a short history of analytical systems constructed from paper, summarize the main advantages and disadvantages of fabrication techniques, exploit alternative methods of detection such as colorimetric, electrochemical, photoelectrochemical, chemiluminescence and electrochemiluminescence, as well as to take a closer look at the novel achievements in the field of bioanalysis published during the last 2 years. Finally, the future trends for production of such devices are discussed.
Resumo:
Technical evaluation of analytical data is of extreme relevance considering it can be used for comparisons with environmental quality standards and decision-making as related to the management of disposal of dredged sediments and the evaluation of salt and brackish water quality in accordance with CONAMA 357/05 Resolution. It is, therefore, essential that the project manager discusses the environmental agency's technical requirements with the laboratory contracted for the follow-up of the analysis underway and even with a view to possible re-analysis when anomalous data are identified. The main technical requirements are: (1) method quantitation limits (QLs) should fall below environmental standards; (2) analyses should be carried out in laboratories whose analytical scope is accredited by the National Institute of Metrology (INMETRO) or qualified or accepted by a licensing agency; (3) chain of custody should be provided in order to ensure sample traceability; (4) control charts should be provided to prove method performance; (5) certified reference material analysis or, if that is not available, matrix spike analysis, should be undertaken and (6) chromatograms should be included in the analytical report. Within this context and with a view to helping environmental managers in analytical report evaluation, this work has as objectives the discussion of the limitations of the application of SW 846 US EPA methods to marine samples, the consequences of having data based on method detection limits (MDL) and not sample quantitation limits (SQL), and present possible modifications of the principal method applied by laboratories in order to comply with environmental quality standards.
Resumo:
Colloidal particles have been used to template the electrosynthesis of several materials, such as semiconductors, metals and alloys. The method allows good control over the thickness of the resulting material by choosing the appropriate charge applied to the system, and it is able to produce high density deposited materials without shrinkage. These materials are a true model of the template structure and, due to the high surface areas obtained, are very promising for use in electrochemical applications. In the present work, the assembly of monodisperse polystyrene templates was conduced over gold, platinum and glassy carbon substrates in order to show the electrodeposition of an oxide, a conducting polymer and a hybrid inorganic-organic material with applications in the supercapacitor and sensor fields. The performances of the resulting nanostructured films have been compared with the analogue bulk material and the results achieved are depicted in this paper.
Resumo:
We describe the concept, the fabrication, and the most relevant properties of a piezoelectric-polymer system: Two fluoroethylenepropylene (FEP) films with good electret properties are laminated around a specifically designed and prepared polytetrafluoroethylene (PTFE) template at 300 degrees C. After removing the PTFE template, a two-layer FEP film with open tubular channels is obtained. For electric charging, the two-layer FEP system is subjected to a high electric field. The resulting dielectric barrier discharges inside the tubular channels yield a ferroelectret with high piezoelectricity. d(33) coefficients of up to 160 pC/N have already been achieved on the ferroelectret films. After charging at suitable elevated temperatures, the piezoelectricity is stable at temperatures of at least 130 degrees C. Advantages of the transducer films include ease of fabrication at laboratory or industrial scales, a wide range of possible geometrical and processing parameters, straightforward control of the uniformity of the polymer system, flexibility, and versatility of the soft ferroelectrets, and a large potential for device applications e.g., in the areas of biomedicine, communications, production engineering, sensor systems, environmental monitoring, etc.