878 resultados para Intelligent parking systems
Resumo:
Demand for intelligent surveillance in public transport systems is growing due to the increased threats of terrorist attack, vandalism and litigation. The aim of intelligent surveillance is in-time reaction to information received from various monitoring devices, especially CCTV systems. However, video analytic algorithms can only provide static assertions, whilst in reality, many related events happen in sequence and hence should be modeled sequentially. Moreover, analytic algorithms are error-prone, hence how to correct the sequential analytic results based on new evidence (external information or later sensing discovery) becomes an interesting issue. In this paper, we introduce a high-level sequential observation modeling framework which can support revision and update on new evidence. This framework adapts the situation calculus to deal with uncertainty from analytic results. The output of the framework can serve as a foundation for event composition. We demonstrate the significance and usefulness of our framework with a case study of a bus surveillance project.
Resumo:
Bridge weigh-in-motion (B-WIM), a system that uses strain sensors to calculate the weights of trucks passing on bridges overhead, requires accurate axle location and speed information for effective performance. The success of a B-WIM system is dependent upon the accuracy of the axle detection method. It is widely recognised that any form of axle detector on the road surface is not ideal for B-WIM applications as it can cause disruption to the traffic (Ojio & Yamada 2002; Zhao et al. 2005; Chatterjee et al. 2006). Sensors under the bridge, that is Nothing-on-Road (NOR) B-WIM, can perform axle detection via data acquisition systems which can detect a peak in strain as the axle passes. The method is often successful, although not all bridges are suitable for NOR B-WIM due to limitations of the system. Significant research has been carried out to further develop the method and the NOR algorithms, but beam-and-slab bridges with deep beams still present a challenge. With these bridges, the slabs are used for axle detection, but peaks in the slab strains are sensitive to the transverse position of wheels on the beam. This next generation B-WIM research project extends the current B-WIM algorithm to the problem of axle detection and safety, thus overcoming the existing limitations in current state-of–the-art technology. Finite Element Analysis was used to determine the critical locations for axle detecting sensors and the findings were then tested in the field. In this paper, alternative strategies for axle detection were determined using Finite Element analysis and the findings were then tested in the field. The site selected for testing was in Loughbrickland, Northern Ireland, along the A1 corridor connecting the two cities of Belfast and Dublin. The structure is on a central route through the island of Ireland and has a high traffic volume which made it an optimum location for the study. Another huge benefit of the chosen location was its close proximity to a nearby self-operated weigh station. To determine the accuracy of the proposed B-WIM system and develop a knowledge base of the traffic load on the structure, a pavement WIM system was also installed on the northbound lane on the approach to the structure. The bridge structure selected for this B-WIM research comprised of 27 pre-cast prestressed concrete Y4-beams, and a cast in-situ concrete deck. The structure, a newly constructed integral bridge, spans 19 m and has an angle of skew of 22.7°.
Resumo:
Anualmente ocorrem cerca de 16 milhões AVCs em todo o mundo. Cerca de metade dos sobreviventes irá apresentar défice motor que necessitará de reabilitação na janela dos 3 aos 6 meses depois do AVC. Nos países desenvolvidos, é estimado que os custos com AVCs representem cerca de 0.27% do Produto Interno Bruto de cada País. Esta situação implica um enorme peso social e financeiro. Paradoxalmente a esta situação, é aceite na comunidade médica a necessidade de serviços de reabilitação motora mais intensivos e centrados no doente. Na revisão do estado da arte, demonstra-se o arquétipo que relaciona metodologias terapêuticas mais intensivas com uma mais proficiente reabilitação motora do doente. Revelam-se também as falhas nas soluções tecnológicas existentes que apresentam uma elevada complexidade e custo associado de aquisição e manutenção. Desta forma, a pergunta que suporta o trabalho de doutoramento seguido inquire a possibilidade de criar um novo dispositivo de simples utilização e de baixo custo, capaz de apoiar uma recuperação motora mais eficiente de um doente após AVC, aliando intensidade com determinação da correcção dos movimentos realizados relativamente aos prescritos. Propondo o uso do estímulo vibratório como uma ferramenta proprioceptiva de intervenção terapêutica a usar no novo dispositivo, demonstra-se a tolerabilidade a este tipo de estímulos através do teste duma primeira versão do sistema apenas com a componente de estimulação num primeiro grupo de 5 doentes. Esta fase validará o subsequente desenvolvimento do sistema SWORD. Projectando o sistema SWORD como uma ferramenta complementar que integra as componentes de avaliação motora e intervenção proprioceptiva por estimulação, é descrito o desenvolvimento da componente de quantificação de movimento que o integra. São apresentadas as diversas soluções estudadas e o algoritmo que representa a implementação final baseada na fusão sensorial das medidas provenientes de três sensores: acelerómetro, giroscópio e magnetómetro. O teste ao sistema SWORD, quando comparado com o método de reabilitação tradicional, mostrou um ganho considerável de intensidade e qualidade na execução motora para 4 dos 5 doentes testados num segundo grupo experimental. É mostrada a versatilidade do sistema SWORD através do desenvolvimento do módulo de Tele-Reabilitação que complementa a componente de quantificação de movimento com uma interface gráfica de feedback e uma ferramenta de análise remota da evolução motora do doente. Finalmente, a partir da componente de quantificação de movimento, foi ainda desenvolvida uma versão para avaliação motora automatizada, implementada a partir da escala WMFT, que visa retirar o factor subjectivo da avaliação humana presente nas escalas de avaliação motora usadas em Neurologia. Esta versão do sistema foi testada num terceiro grupo experimental de cinco doentes.
Resumo:
Future emerging market trends head towards positioning based services placing a new perspective on the way we obtain and exploit positioning information. On one hand, innovations in information technology and wireless communication systems enabled the development of numerous location based applications such as vehicle navigation and tracking, sensor networks applications, home automation, asset management, security and context aware location services. On the other hand, wireless networks themselves may bene t from localization information to improve the performances of di erent network layers. Location based routing, synchronization, interference cancellation are prime examples of applications where location information can be useful. Typical positioning solutions rely on measurements and exploitation of distance dependent signal metrics, such as the received signal strength, time of arrival or angle of arrival. They are cheaper and easier to implement than the dedicated positioning systems based on ngerprinting, but at the cost of accuracy. Therefore intelligent localization algorithms and signal processing techniques have to be applied to mitigate the lack of accuracy in distance estimates. Cooperation between nodes is used in cases where conventional positioning techniques do not perform well due to lack of existing infrastructure, or obstructed indoor environment. The objective is to concentrate on hybrid architecture where some nodes have points of attachment to an infrastructure, and simultaneously are interconnected via short-range ad hoc links. The availability of more capable handsets enables more innovative scenarios that take advantage of multiple radio access networks as well as peer-to-peer links for positioning. Link selection is used to optimize the tradeo between the power consumption of participating nodes and the quality of target localization. The Geometric Dilution of Precision and the Cramer-Rao Lower Bound can be used as criteria for choosing the appropriate set of anchor nodes and corresponding measurements before attempting location estimation itself. This work analyzes the existing solutions for node selection in order to improve localization performance, and proposes a novel method based on utility functions. The proposed method is then extended to mobile and heterogeneous environments. Simulations have been carried out, as well as evaluation with real measurement data. In addition, some speci c cases have been considered, such as localization in ill-conditioned scenarios and the use of negative information. The proposed approaches have shown to enhance estimation accuracy, whilst signi cantly reducing complexity, power consumption and signalling overhead.
Resumo:
Freshness and safety of muscle foods are generally considered as the most important parameters for the food industry. To address the rapid detection of meat spoilage microorganisms during aerobic or modified atmosphere storage, an electronic nose with the aid of fuzzy wavelet network has been considered in this research. The proposed model incorporates a clustering pre-processing stage for the definition of fuzzy rules. The dual purpose of the proposed modelling approach is not only to classify beef samples in the respective quality class (i.e. fresh, semi-fresh and spoiled), but also to predict their associated microbiological population directly from volatile compounds fingerprints. Comparison results against neural networks and neurofuzzy systems indicated that the proposed modelling scheme could be considered as a valuable detection methodology in food microbiology
Resumo:
The spread and globalization of distributed generation (DG) in recent years has should highly influence the changes that occur in Electricity Markets (EMs). DG has brought a large number of new players to take action in the EMs, therefore increasing the complexity of these markets. Simulation based on multi-agent systems appears as a good way of analyzing players’ behavior and interactions, especially in a coalition perspective, and the effects these players have on the markets. MASCEM – Multi-Agent System for Competitive Electricity Markets was created to permit the study of the market operation with several different players and market mechanisms. MASGriP – Multi-Agent Smart Grid Platform is being developed to facilitate the simulation of micro grid (MG) and smart grid (SG) concepts with multiple different scenarios. This paper presents an intelligent management method for MG and SG. The simulation of different methods of control provides an advantage in comparing different possible approaches to respond to market events. Players utilize electric vehicles’ batteries and participate in Demand Response (DR) contracts, taking advantage on the best opportunities brought by the use of all resources, to improve their actions in response to MG and/or SG requests.
Resumo:
The large penetration of intermittent resources, such as solar and wind generation, involves the use of storage systems in order to improve power system operation. Electric Vehicles (EVs) with gridable capability (V2G) can operate as a means for storing energy. This paper proposes an algorithm to be included in a SCADA (Supervisory Control and Data Acquisition) system, which performs an intelligent management of three types of consumers: domestic, commercial and industrial, that includes the joint management of loads and the charge/discharge of EVs batteries. The proposed methodology has been implemented in a SCADA system developed by the authors of this paper – the SCADA House Intelligent Management (SHIM). Any event in the system, such as a Demand Response (DR) event, triggers the use of an optimization algorithm that performs the optimal energy resources scheduling (including loads and EVs), taking into account the priorities of each load defined by the installation users. A case study considering a specific consumer with several loads and EVs is presented in this paper.
Resumo:
A novel approach to scheduling resolution by combining Autonomic Computing (AC), Multi-Agent Systems (MAS), Case-based Reasoning (CBR), and Bio-Inspired Optimization Techniques (BIT) will be described. AC has emerged as a paradigm aiming at incorporating applications with a management structure similar to the central nervous system. The main intentions are to improve resource utilization and service quality. In this paper we envisage the use of MAS paradigm for supporting dynamic and distributed scheduling in Manufacturing Systems with AC properties, in order to reduce the complexity of managing manufacturing systems and human interference. The proposed CBR based Intelligent Scheduling System was evaluated under different dynamic manufacturing scenarios.
Resumo:
In recent years the use of several new resources in power systems, such as distributed generation, demand response and more recently electric vehicles, has significantly increased. Power systems aim at lowering operational costs, requiring an adequate energy resources management. In this context, load consumption management plays an important role, being necessary to use optimization strategies to adjust the consumption to the supply profile. These optimization strategies can be integrated in demand response programs. The control of the energy consumption of an intelligent house has the objective of optimizing the load consumption. This paper presents a genetic algorithm approach to manage the consumption of a residential house making use of a SCADA system developed by the authors. Consumption management is done reducing or curtailing loads to keep the power consumption in, or below, a specified energy consumption limit. This limit is determined according to the consumer strategy and taking into account the renewable based micro generation, energy price, supplier solicitations, and consumers’ preferences. The proposed approach is compared with a mixed integer non-linear approach.
Resumo:
With the current increase of energy resources prices and environmental concerns intelligent load management systems are gaining more and more importance. This paper concerns a SCADA House Intelligent Management (SHIM) system that includes an optimization module using deterministic and genetic algorithm approaches. SHIM undertakes contextual load management based on the characterization of each situation. SHIM considers available generation resources, load demand, supplier/market electricity price, and consumers’ constraints and preferences. The paper focus on the recently developed learning module which is based on artificial neural networks (ANN). The learning module allows the adjustment of users’ profiles along SHIM lifetime. A case study considering a system with fourteen discrete and four variable loads managed by a SHIM system during five consecutive similar weekends is presented.
Resumo:
A supervisory control and data acquisition (SCADA) system is an integrated platform that incorporates several components and it has been applied in the field of power systems and several engineering applications to monitor, operate and control a lot of processes. In the future electrical networks, SCADA systems are essential for an intelligent management of resources like distributed generation and demand response, implemented in the smart grid context. This paper presents a SCADA system for a typical residential house. The application is implemented on MOVICON™11 software. The main objective is to manage the residential consumption, reducing or curtailing loads to keep the power consumption in or below a specified setpoint, imposed by the costumer and the generation availability.
Resumo:
Future distribution systems will have to deal with an intensive penetration of distributed energy resources ensuring reliable and secure operation according to the smart grid paradigm. SCADA (Supervisory Control and Data Acquisition) is an essential infrastructure for this evolution. This paper proposes a new conceptual design of an intelligent SCADA with a decentralized, flexible, and intelligent approach, adaptive to the context (context awareness). This SCADA model is used to support the energy resource management undertaken by a distribution network operator (DNO). Resource management considers all the involved costs, power flows, and electricity prices, allowing the use of network reconfiguration and load curtailment. Locational Marginal Prices (LMP) are evaluated and used in specific situations to apply Demand Response (DR) programs on a global or a local basis. The paper includes a case study using a 114 bus distribution network and load demand based on real data.
Resumo:
Competitive electricity markets have arisen as a result of power-sector restructuration and power-system deregulation. The players participating in competitive electricity markets must define strategies and make decisions using all the available information and business opportunities.