912 resultados para Industrial Control Systems (ICS)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

El auge y evolución de los sistemas de comunicaciones móviles y de las redes inalámbricas avanzadas, sucedido desde principios del siglo XXI, han propiciado el uso de Redes de Sensores Inalámbricos (RSI) en múltiples ámbitos de interés. Dichas redes están típicamente compuestas por dispositivos inalámbricos autónomos que incorporan sensores para la recogida de datos de distinta naturaleza. Las RSI se caracterizan por su escalabilidad, ausencia de cableado, pequeño tamaño, bajo consumo, gran variedad de magnitudes físico/químicas medibles, entre otras, cuyas cualidades las hace muy interesantes para su aplicación en multitud de escenarios de la Sociedad de la Información, tales como domótica, agricultura y ganadería, medioambiente, salud, procesos industriales, logística, seguridad o ciudades inteligentes, ente otras. En este Trabajo Fin de Máster, se propone el uso de las RSI en el escenario de Emergencias donde cobra gran importancia la usabilidad, la fiabilidad, la disponibilidad, y la robustez de los sistemas a emplear en condiciones hostiles, especialmente en las de bomberos. Es por ello que se analizarán previamente los trabajos de RSI desarrollados para estos entornos y que sugieren qué aplicaciones garantizan el cumplimiento de los requerimientos mencionados. Se aborda la utilización de una primera RSI para la monitorización ambiental de tres Centros de Procesado de Datos (CPD) del departamento de TI de Emergencias, siendo este un entorno sin movilidad, más controlado y que aporta la adquisición de experiencia en la utilización de las RSI de cara a un entorno móvil más complejo. A continuación, para el entorno móvil se ha desarrollado y validado un prototipo experimental de RSI para el seguimiento de salida de parques de bomberos de vehículos con su dotación. Así mismo se implementa un prototipo para la ayuda a la localización de bomberos y/o personas en un siniestro. Estas RSI se desarrollan e implantan en el entorno de Emergencias del Ayuntamiento de Madrid, entidad sin cuyo apoyo habría sido imposible la aplicación práctica de este trabajo. SUMMARY. The rise and evolution of mobile communication systems and advanced wireless networks in early XXI century have allowed to taking advantage of Wireless Sensor Networks (WSN). These networks are composed of independent wireless devices that incorporate sensors for collecting data of different nature. The WSN is characterized by its scalability, no wiring, small size, low power consumption, wide range of physical magnitudes measurable, among others. These qualities make them very interesting for application in many scenarios to the Information Society, such as, domotic, agriculture, smart environment, ehealth, industrial control, logistics, security and smart cities, among others. This work proposes to use WSN in the emergency scenario where is very important the usability, reliability, availability, and robustness of the systems to be used in hostile conditions, especially in fire-fighters environment. That is why WSN works in emergency will be studied to tackle what applications compliance with the above requirements. The first WSN developed will be environmental monitoring of three CPDs IT department Emergency. This scenario is a non-mobile environment, more controlled and bring gaining experience in the use of WSN to face mobile environment which is more complex. Then, for the mobile environment is developed an experimental prototype of WSN for tracking fire vehicles living fire stations with their equipment. Another prototype is foreseen to be implemented to assist fire-fighters location and / or people in a disaster. These WSN are developed and implemented for Madrid City Emergency, whose involvement was critical to put this research into stage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los sistemas técnicos son cada vez más complejos, incorporan funciones más avanzadas, están más integrados con otros sistemas y trabajan en entornos menos controlados. Todo esto supone unas condiciones más exigentes y con mayor incertidumbre para los sistemas de control, a los que además se demanda un comportamiento más autónomo y fiable. La adaptabilidad de manera autónoma es un reto para tecnologías de control actualmente. El proyecto de investigación ASys propone abordarlo trasladando la responsabilidad de la capacidad de adaptación del sistema de los ingenieros en tiempo de diseño al propio sistema en operación. Esta tesis pretende avanzar en la formulación y materialización técnica de los principios de ASys de cognición y auto-consciencia basadas en modelos y autogestión de los sistemas en tiempo de operación para una autonomía robusta. Para ello el trabajo se ha centrado en la capacidad de auto-conciencia, inspirada en los sistemas biológicos, y se ha explorado la posibilidad de integrarla en la arquitectura de los sistemas de control. Además de la auto-consciencia, se han explorado otros temas relevantes: modelado funcional, modelado de software, tecnología de los patrones, tecnología de componentes, tolerancia a fallos. Se ha analizado el estado de la técnica en los ámbitos pertinentes para las cuestiones de la auto-consciencia y la adaptabilidad en sistemas técnicos: arquitecturas cognitivas, control tolerante a fallos, y arquitecturas software dinámicas y computación autonómica. El marco teórico de ASys existente de sistemas autónomos cognitivos ha sido adaptado para servir de base para este análisis de autoconsciencia y adaptación y para dar sustento conceptual al posterior desarrollo de la solución. La tesis propone una solución general de diseño para la construcción de sistemas autónomos auto-conscientes. La idea central es la integración de un meta-controlador en la arquitectura de control del sistema autónomo, capaz de percibir la estado funcional del sistema de control y, si es necesario, reconfigurarlo en tiempo de operación. Esta solución de metacontrol se ha formalizado en cuatro patrones de diseño: i) el Patrón Metacontrol, que define la integración de un subsistema de metacontrol, responsable de controlar al propio sistema de control a través de la interfaz proporcionada por su plataforma de componentes, ii) el patrón Bucle de Control Epistémico, que define un bucle de control cognitivo basado en el modelos y que se puede aplicar al diseño del metacontrol, iii) el patrón de Reflexión basada en Modelo Profundo propone una solución para construir el modelo ejecutable utilizado por el meta-controlador mediante una transformación de modelo a modelo a partir del modelo de ingeniería del sistema, y, finalmente, iv) el Patrón Metacontrol Funcional, que estructura el meta-controlador en dos bucles, uno para el control de la configuración de los componentes del sistema de control, y otro sobre éste, controlando las funciones que realiza dicha configuración de componentes; de esta manera las consideraciones funcionales y estructurales se desacoplan. La Arquitectura OM y el metamodelo TOMASys son las piezas centrales del marco arquitectónico desarrollado para materializar la solución compuesta de los patrones anteriores. El metamodelo TOMASys ha sido desarrollado para la representación de la estructura y su relación con los requisitos funcionales de cualquier sistema autónomo. La Arquitectura OM es un patrón de referencia para la construcción de una metacontrolador integrando los patrones de diseño propuestos. Este meta-controlador se puede integrar en la arquitectura de cualquier sistema control basado en componentes. El elemento clave de su funcionamiento es un modelo TOMASys del sistema decontrol, que el meta-controlador usa para monitorizarlo y calcular las acciones de reconfiguración necesarias para adaptarlo a las circunstancias en cada momento. Un proceso de ingeniería, complementado con otros recursos, ha sido elaborado para guiar la aplicación del marco arquitectónico OM. Dicho Proceso de Ingeniería OM define la metodología a seguir para construir el subsistema de metacontrol para un sistema autónomo a partir del modelo funcional del mismo. La librería OMJava proporciona una implementación del meta-controlador OM que se puede integrar en el control de cualquier sistema autónomo, independientemente del dominio de la aplicación o de su tecnología de implementación. Para concluir, la solución completa ha sido validada con el desarrollo de un robot móvil autónomo que incorpora un meta-controlador con la Arquitectura OM. Las propiedades de auto-consciencia y adaptación proporcionadas por el meta-controlador han sido validadas en diferentes escenarios de operación del robot, en los que el sistema era capaz de sobreponerse a fallos en el sistema de control mediante reconfiguraciones orquestadas por el metacontrolador. ABSTRACT Technical systems are becoming more complex, they incorporate more advanced functionalities, they are more integrated with other systems and they are deployed in less controlled environments. All this supposes a more demanding and uncertain scenario for control systems, which are also required to be more autonomous and dependable. Autonomous adaptivity is a current challenge for extant control technologies. The ASys research project proposes to address it by moving the responsibility for adaptivity from the engineers at design time to the system at run-time. This thesis has intended to advance in the formulation and technical reification of ASys principles of model-based self-cognition and having systems self-handle at runtime for robust autonomy. For that it has focused on the biologically inspired capability of self-awareness, and explored the possibilities to embed it into the very architecture of control systems. Besides self-awareness, other themes related to the envisioned solution have been explored: functional modeling, software modeling, patterns technology, components technology, fault tolerance. The state of the art in fields relevant for the issues of self-awareness and adaptivity has been analysed: cognitive architectures, fault-tolerant control, and software architectural reflection and autonomic computing. The extant and evolving ASys Theoretical Framework for cognitive autonomous systems has been adapted to provide a basement for this selfhood-centred analysis and to conceptually support the subsequent development of our solution. The thesis proposes a general design solution for building self-aware autonomous systems. Its central idea is the integration of a metacontroller in the control architecture of the autonomous system, capable of perceiving the functional state of the control system and reconfiguring it if necessary at run-time. This metacontrol solution has been formalised into four design patterns: i) the Metacontrol Pattern, which defines the integration of a metacontrol subsystem, controlling the domain control system through an interface provided by its implementation component platform, ii) the Epistemic Control Loop pattern, which defines a modelbased cognitive control loop that can be applied to the design of such a metacontroller, iii) the Deep Model Reflection pattern proposes a solution to produce the online executable model used by the metacontroller by model-to-model transformation from the engineering model, and, finally, iv) the Functional Metacontrol pattern, which proposes to structure the metacontroller in two loops, one for controlling the configuration of components of the controller, and another one on top of the former, controlling the functions being realised by that configuration; this way the functional and structural concerns become decoupled. The OM Architecture and the TOMASys metamodel are the core pieces of the architectural framework developed to reify this patterned solution. The TOMASys metamodel has been developed for representing the structure and its relation to the functional requirements of any autonomous system. The OM architecture is a blueprint for building a metacontroller according to the patterns. This metacontroller can be integrated on top of any component-based control architecture. At the core of its operation lies a TOMASys model of the control system. An engineering process and accompanying assets have been constructed to complete and exploit the architectural framework. The OM Engineering Process defines the process to follow to develop the metacontrol subsystem from the functional model of the controller of the autonomous system. The OMJava library provides a domain and application-independent implementation of an OM Metacontroller than can be used in the implementation phase of OMEP. Finally, the complete solution has been validated in the development of an autonomous mobile robot that incorporates an OM metacontroller. The functional selfawareness and adaptivity properties achieved thanks to the metacontrol system have been validated in different scenarios. In these scenarios the robot was able to overcome failures in the control system thanks to reconfigurations performed by the metacontroller.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a general approach for real time traffic management support using knowledge based models. Recognizing that human intervention is usually required to apply the current automatic traffic control systems, it is argued that there is a need for an additional intelligent layer to help operators to understand traffic problems and to make the best choice of strategic control actions that modify the assumption framework of the existing systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless teleoperation of field robots for maintenance, inspection and rescue missions is often performed in environments with low wireless connectivity, caused by signal losses from the environment and distance from the wireless transmitters. Various studies from the literature have addressed these problems with time-delay robust control systems and multi-hop wireless relay networks. However, such approaches do not solve the issue of how to present wireless data to the operator to avoid losing control of the robot. Despite the fact that teleoperation for maintenance often already involves haptic devices, no studies look at the possibility of using this existing feedback to aid operators in navigating within areas of variable wireless connectivity. We propose a method to incorporate haptic information into the velocity control of an omnidirectional robot to augment the operators perception of wireless signal strength in the remote environment. In this paper we introduce a mapping between wireless signal strength from multiple receivers to the force feedback of a 6 Degree of Freedom haptic master and evaluate the proposed approach using experimental data and randomly generated wireless maps

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EPICS (Experimental Physics and Industrial Control System) lies in a set of software tools and applications which provide a software infrastructure for building distributed data acquisition and control systems. Currently there is an increase in use of such systems in large Physics experiments like ITER, ESS, and FREIA. In these experiments, advanced data acquisition systems using FPGA-based technology like FlexRIO are more frequently been used. The particular case of ITER (International Thermonuclear Experimental Reactor), the instrumentation and control system is supported by CCS (CODAC Core System), based on RHEL (Red Hat Enterprise Linux) operating system, and by the plant design specifications in which every CCS element is defined either hardware, firmware or software. In this degree final project the methodology proposed in Implementation of Intelligent Data Acquisition Systems for Fusion Experiments using EPICS and FlexRIO Technology Sanz et al. [1] is used. The final objective is to provide a document describing the fulfilled process and the source code of the data acquisition system accomplished. The use of the proposed methodology leads to have two diferent stages. The first one consists of the hardware modelling with graphic design tools like LabVIEWFPGA which later will be implemented in the FlexRIO device. In the next stage the design cycle is completed creating an EPICS controller that manages the device using a generic device support layer named NDS (Nominal Device Support). This layer integrates the data acquisition system developed into CCS (Control, data access and communication Core System) as an EPICS interface to the system. The use of FlexRIO technology drives the use of LabVIEW and LabVIEW FPGA respectively. RESUMEN. EPICS (Experimental Physics and Industrial Control System) es un conjunto de herramientas software utilizadas para el desarrollo e implementación de sistemas de adquisición de datos y control distribuidos. Cada vez es más utilizado para entornos de experimentación física a gran escala como ITER, ESS y FREIA entre otros. En estos experimentos se están empezando a utilizar sistemas de adquisición de datos avanzados que usan tecnología basada en FPGA como FlexRIO. En el caso particular de ITER, el sistema de instrumentación y control adoptado se basa en el uso de la herramienta CCS (CODAC Core System) basado en el sistema operativo RHEL (Red Hat) y en las especificaciones del diseño del sistema de planta, en la cual define todos los elementos integrantes del CCS, tanto software como firmware y hardware. En este proyecto utiliza la metodología propuesta para la implementación de sistemas de adquisición de datos inteligente basada en EPICS y FlexRIO. Se desea generar una serie de ejemplos que cubran dicho ciclo de diseño completo y que serían propuestos como casos de uso de dichas tecnologías. Se proporcionará un documento en el que se describa el trabajo realizado así como el código fuente del sistema de adquisición. La metodología adoptada consta de dos etapas diferenciadas. En la primera de ellas se modela el hardware y se sintetiza en el dispositivo FlexRIO utilizando LabVIEW FPGA. Posteriormente se completa el ciclo de diseño creando un controlador EPICS que maneja cada dispositivo creado utilizando una capa software genérica de manejo de dispositivos que se denomina NDS (Nominal Device Support). Esta capa integra la solución en CCS realizando la interfaz con la capa EPICS del sistema. El uso de la tecnología FlexRIO conlleva el uso del lenguaje de programación y descripción hardware LabVIEW y LabVIEW FPGA respectivamente.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we proposes a control strategy that allows the remote manipulator follow the local manipulator through the state convergence even if it has a delay in the communication channel. The bilateral control of the teleoperator system considers the case were the human operator applies a constant force on the local manipulator and when the interaction of the remote manipulator with the environment is considered passive. The stability analysis was performed using Lyapunov- Krasovskii functional, it showed for the case with constant delay, that using a proposed control algorithm by state convergence resulted in asymptotically stable, local and remote the nonlinear teleoperation system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los sistemas de tiempo real tienen un papel cada vez más importante en nuestra sociedad. Constituyen un componente fundamental de los sistemas de control, que a su vez forman parte de diversos sistemas de ingeniería básicos en actividades industriales, militares, de comunicaciones, espaciales y médicas. La planificación de recursos es un problema fundamental en la realización de sistemas de tiempo real. Su objetivo es asignar los recursos disponibles a las tareas de forma que éstas cumplan sus restricciones temporales. Durante bastante tiempo, el estado de la técnica en relación con los métodos de planificación ha sido rudimentario. En la actualidad, los métodos de planificación basados en prioridades han alcanzado un nivel de madurez suficiente para su aplicación en entornos industriales. Sin embargo, hay cuestiones abiertas que pueden dificultar su utilización. El objetivo principal de esta tesis es estudiar los métodos de planificación basados en prioridades, detectar las cuestiones abiertas y desarrollar protocolos, directrices y esquemas de realización práctica que faciliten su empleo en sistemas industriales. Una cuestión abierta es la carencia de esquemas de realización de algunos protocolos con núcleos normalizados. El resultado ha sido el desarrollo de esquemas de realización de tareas periódicas y esporádicas de tiempo real, con detección de fallos de temporización, comunicación entre tareas, cambio de modo de ejecución del sistema y tratamiento de fallos mediante grupos de recuperación. Los esquemas se han codificado en Ada 9X y se proporcionan directrices para analizar la planificabilidad de un sistema desarrollado con esta base. Un resultado adicional ha sido la identificación de la funcionalidad mínima necesaria para desarrollar sistemas de tiempo real con las características enumeradas. La capacidad de adaptación a los cambios del entorno es una característica deseable de los sistemas de tiempo real. Si estos cambios no estaban previstos en la fase de diseño o si hay módulos erróneos, es necesario modificar o incluir algunas tareas. La actualización del sistema se suele realizar estáticamente y su instalación se lleva a cabo después de parar su ejecución. Sin embargo, hay sistemas cuyo funcionamiento no se puede detener sin producir daños materiales o económicos. Una alternativa es diseñar el sistema como un conjunto de unidades que se pueden reemplazar, sin interferir con la ejecución de otras unidades. Para tal fin, se ha desarrollado un protocolo de reemplazamiento dinámico para sistemas de tiempo real crítico y se ha comprobado su compatibilidad con los métodos de planificación basados en prioridades. Finalmente se ha desarrollado un esquema de realización práctica del protocolo.---ABSTRACT---Real-time systems are very important now a days. They have become a relevant issue in the design of control systems, which are a basic component of several engineering systems in industrial, telecommunications, military, spatial and medical applications. Resource scheduling is a central issue in the development of real-time systems. Its purpose is to assign the available resources to the tasks, in such a way that their deadlines are met. Historically, hand-crafted techniques were used to develop real-time systems. Recently, the priority-based scheduling methods have reached a sufficient maturity level to be feasible its extensive use in industrial applications. However, there are some open questions that may decrease its potential usefulness. The main goal of this thesis is to study the priority-based scheduling methods, to identify the remaining open questions and to develop protocols, implementation templates and guidelines that will make more feasible its use in industrial applications. One open question is the lack of implementation schemes, based on commercial realtime kernels, of some of the protocols. POSIX and Ada 9X has served to identify the services usually available. A set of implementation templates for periodic and sporadic tasks have been developed with provisión for timing failure detection, intertask coraraunication, change of the execution mode and failure handling based on recovery groups. Those templates have been coded in Ada 9X. A set of guidelines for checking the schedulability of a system based on them are also provided. An additional result of this work is the identification of the minimal functionality required to develop real-time systems based on priority scheduling methods, with the above characteristics. A desirable feature of real-time systems is their capacity to adapt to changes in the environment, that cannot be entirely predicted during the design, or to misbehaving software modules. The traditional maintenance techniques are performed by stopping the whole system, installing the new application and finally resuming the system execution. However this approach cannot be applied to non-stop systems. An alternative is to design the system as a set of software units that can be dynamically replaced within its operative environment. With this goal in mind, a dynamic replacement protocol for hard real-time systems has been defined. Its compatibility with priority-based scheduling methods has been proved. Finally, a execution témplate of the protocol has been implemented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In current industrial environments there is an increasing need for practical and inexpensive quality control systems to detect the foreign food materials in powder food processing lines. This demand is especially important for the detection of product adulteration with traces of highly allergenic products, such as peanuts and tree nuts. Manufacturing industries dealing with the processing of multiple powder food products present a substantial risk for the contamination of powder foods with traces of tree nuts and other adulterants, which might result in unintentional ingestion of nuts by the sensitised population. Hence, the need for an in-line system to detect nut traces at the early stages of food manufacturing is of crucial importance. In this present work, a feasibility study of a spectral index for revealing adulteration of tree nut and peanut traces in wheat flour samples with hyperspectral images is reported. The main nuts responsible for allergenic reactions considered in this work were peanut, hazelnut and walnut. Enhanced contrast between nuts and wheat flour was obtained after the application of the index. Furthermore, the segmentation of these images by selecting different thresholds for different nut and flour mixtures allowed the identification of nut traces in the samples. Pixels identified as nuts were counted and compared with the actual percentage of peanut adulteration. As a result, the multispectral system was able to detect and provide good visualisation of tree nut and peanut trace levels down to 0.01% by weight. In this context, multispectral imaging could operate in conjuction with chemical procedures, such as Real Time Polymerase Chain Reaction and Enzyme-Linked Immunosorbent Assay to save time, money and skilled labour on product quality control. This approach could enable not only a few selected samples to be assessed but also to extensively incorporate quality control surveyance on product processing lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In current industrial environments there is an increasing need for practical and inexpensive quality control systems to detect the foreign food materials in powder food processing lines. This demand is especially important for the detection of product adulteration with traces of highly allergenic products, such as peanuts and tree nuts. Manufacturing industries dealing with the processing of multiple powder food products present a substantial risk for the contamination of powder foods with traces of tree nuts and other adulterants, which might result in unintentional ingestion of nuts by the sensitised population. Hence, the need for an in-line system to detect nut traces at the early stages of food manufacturing is of crucial importance. In this present work, a feasibility study of a spectral index for revealing adulteration of tree nut and peanut traces in wheat flour samples with hyperspectral images is reported. The main nuts responsible for allergenic reactions considered in this work were peanut, hazelnut and walnut. Enhanced contrast between nuts and wheat flour was obtained after the application of the index. Furthermore, the segmentation of these images by selecting different thresholds for different nut and flour mixtures allowed the identification of nut traces in the samples. Pixels identified as nuts were counted and with the actual percentage of peanut adulteration. As a result, the multispectral system was able to detect and provide good visualisation of tree nut and peanut trace levels down to 0.01% by weight. In this context, multispectral imaging could operate in conjuction with chemical procedures, such as Real Time Polymerase Chain Reaction and Enzyme-Linked Immunosorbent Assay to save time, money and skilled labour on product quality control. This approach could enable not only a few selected samples to be assessed but also to extensively incorporate quality control surveyance on product processing lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El auge del "Internet de las Cosas" (IoT, "Internet of Things") y sus tecnologías asociadas han permitido su aplicación en diversos dominios de la aplicación, entre los que se encuentran la monitorización de ecosistemas forestales, la gestión de catástrofes y emergencias, la domótica, la automatización industrial, los servicios para ciudades inteligentes, la eficiencia energética de edificios, la detección de intrusos, la gestión de desastres y emergencias o la monitorización de señales corporales, entre muchas otras. La desventaja de una red IoT es que una vez desplegada, ésta queda desatendida, es decir queda sujeta, entre otras cosas, a condiciones climáticas cambiantes y expuestas a catástrofes naturales, fallos de software o hardware, o ataques maliciosos de terceros, por lo que se puede considerar que dichas redes son propensas a fallos. El principal requisito de los nodos constituyentes de una red IoT es que estos deben ser capaces de seguir funcionando a pesar de sufrir errores en el propio sistema. La capacidad de la red para recuperarse ante fallos internos y externos inesperados es lo que se conoce actualmente como "Resiliencia" de la red. Por tanto, a la hora de diseñar y desplegar aplicaciones o servicios para IoT, se espera que la red sea tolerante a fallos, que sea auto-configurable, auto-adaptable, auto-optimizable con respecto a nuevas condiciones que puedan aparecer durante su ejecución. Esto lleva al análisis de un problema fundamental en el estudio de las redes IoT, el problema de la "Conectividad". Se dice que una red está conectada si todo par de nodos en la red son capaces de encontrar al menos un camino de comunicación entre ambos. Sin embargo, la red puede desconectarse debido a varias razones, como que se agote la batería, que un nodo sea destruido, etc. Por tanto, se hace necesario gestionar la resiliencia de la red con el objeto de mantener la conectividad entre sus nodos, de tal manera que cada nodo IoT sea capaz de proveer servicios continuos, a otros nodos, a otras redes o, a otros servicios y aplicaciones. En este contexto, el objetivo principal de esta tesis doctoral se centra en el estudio del problema de conectividad IoT, más concretamente en el desarrollo de modelos para el análisis y gestión de la Resiliencia, llevado a la práctica a través de las redes WSN, con el fin de mejorar la capacidad la tolerancia a fallos de los nodos que componen la red. Este reto se aborda teniendo en cuenta dos enfoques distintos, por una parte, a diferencia de otro tipo de redes de dispositivos convencionales, los nodos en una red IoT son propensos a perder la conexión, debido a que se despliegan en entornos aislados, o en entornos con condiciones extremas; por otra parte, los nodos suelen ser recursos con bajas capacidades en términos de procesamiento, almacenamiento y batería, entre otros, por lo que requiere que el diseño de la gestión de su resiliencia sea ligero, distribuido y energéticamente eficiente. En este sentido, esta tesis desarrolla técnicas auto-adaptativas que permiten a una red IoT, desde la perspectiva del control de su topología, ser resiliente ante fallos en sus nodos. Para ello, se utilizan técnicas basadas en lógica difusa y técnicas de control proporcional, integral y derivativa (PID - "proportional-integral-derivative"), con el objeto de mejorar la conectividad de la red, teniendo en cuenta que el consumo de energía debe preservarse tanto como sea posible. De igual manera, se ha tenido en cuenta que el algoritmo de control debe ser distribuido debido a que, en general, los enfoques centralizados no suelen ser factibles a despliegues a gran escala. El presente trabajo de tesis implica varios retos que conciernen a la conectividad de red, entre los que se incluyen: la creación y el análisis de modelos matemáticos que describan la red, una propuesta de sistema de control auto-adaptativo en respuesta a fallos en los nodos, la optimización de los parámetros del sistema de control, la validación mediante una implementación siguiendo un enfoque de ingeniería del software y finalmente la evaluación en una aplicación real. Atendiendo a los retos anteriormente mencionados, el presente trabajo justifica, mediante una análisis matemático, la relación existente entre el "grado de un nodo" (definido como el número de nodos en la vecindad del nodo en cuestión) y la conectividad de la red, y prueba la eficacia de varios tipos de controladores que permiten ajustar la potencia de trasmisión de los nodos de red en respuesta a eventuales fallos, teniendo en cuenta el consumo de energía como parte de los objetivos de control. Así mismo, este trabajo realiza una evaluación y comparación con otros algoritmos representativos; en donde se demuestra que el enfoque desarrollado es más tolerante a fallos aleatorios en los nodos de la red, así como en su eficiencia energética. Adicionalmente, el uso de algoritmos bioinspirados ha permitido la optimización de los parámetros de control de redes dinámicas de gran tamaño. Con respecto a la implementación en un sistema real, se han integrado las propuestas de esta tesis en un modelo de programación OSGi ("Open Services Gateway Initiative") con el objeto de crear un middleware auto-adaptativo que mejore la gestión de la resiliencia, especialmente la reconfiguración en tiempo de ejecución de componentes software cuando se ha producido un fallo. Como conclusión, los resultados de esta tesis doctoral contribuyen a la investigación teórica y, a la aplicación práctica del control resiliente de la topología en redes distribuidas de gran tamaño. Los diseños y algoritmos presentados pueden ser vistos como una prueba novedosa de algunas técnicas para la próxima era de IoT. A continuación, se enuncian de forma resumida las principales contribuciones de esta tesis: (1) Se han analizado matemáticamente propiedades relacionadas con la conectividad de la red. Se estudia, por ejemplo, cómo varía la probabilidad de conexión de la red al modificar el alcance de comunicación de los nodos, así como cuál es el mínimo número de nodos que hay que añadir al sistema desconectado para su re-conexión. (2) Se han propuesto sistemas de control basados en lógica difusa para alcanzar el grado de los nodos deseado, manteniendo la conectividad completa de la red. Se han evaluado diferentes tipos de controladores basados en lógica difusa mediante simulaciones, y los resultados se han comparado con otros algoritmos representativos. (3) Se ha investigado más a fondo, dando un enfoque más simple y aplicable, el sistema de control de doble bucle, y sus parámetros de control se han optimizado empleando algoritmos heurísticos como el método de la entropía cruzada (CE, "Cross Entropy"), la optimización por enjambre de partículas (PSO, "Particle Swarm Optimization"), y la evolución diferencial (DE, "Differential Evolution"). (4) Se han evaluado mediante simulación, la mayoría de los diseños aquí presentados; además, parte de los trabajos se han implementado y validado en una aplicación real combinando técnicas de software auto-adaptativo, como por ejemplo las de una arquitectura orientada a servicios (SOA, "Service-Oriented Architecture"). ABSTRACT The advent of the Internet of Things (IoT) enables a tremendous number of applications, such as forest monitoring, disaster management, home automation, factory automation, smart city, etc. However, various kinds of unexpected disturbances may cause node failure in the IoT, for example battery depletion, software/hardware malfunction issues and malicious attacks. So, it can be considered that the IoT is prone to failure. The ability of the network to recover from unexpected internal and external failures is known as "resilience" of the network. Resilience usually serves as an important non-functional requirement when designing IoT, which can further be broken down into "self-*" properties, such as self-adaptive, self-healing, self-configuring, self-optimization, etc. One of the consequences that node failure brings to the IoT is that some nodes may be disconnected from others, such that they are not capable of providing continuous services for other nodes, networks, and applications. In this sense, the main objective of this dissertation focuses on the IoT connectivity problem. A network is regarded as connected if any pair of different nodes can communicate with each other either directly or via a limited number of intermediate nodes. More specifically, this thesis focuses on the development of models for analysis and management of resilience, implemented through the Wireless Sensor Networks (WSNs), which is a challenging task. On the one hand, unlike other conventional network devices, nodes in the IoT are more likely to be disconnected from each other due to their deployment in a hostile or isolated environment. On the other hand, nodes are resource-constrained in terms of limited processing capability, storage and battery capacity, which requires that the design of the resilience management for IoT has to be lightweight, distributed and energy-efficient. In this context, the thesis presents self-adaptive techniques for IoT, with the aim of making the IoT resilient against node failures from the network topology control point of view. The fuzzy-logic and proportional-integral-derivative (PID) control techniques are leveraged to improve the network connectivity of the IoT in response to node failures, meanwhile taking into consideration that energy consumption must be preserved as much as possible. The control algorithm itself is designed to be distributed, because the centralized approaches are usually not feasible in large scale IoT deployments. The thesis involves various aspects concerning network connectivity, including: creation and analysis of mathematical models describing the network, proposing self-adaptive control systems in response to node failures, control system parameter optimization, implementation using the software engineering approach, and evaluation in a real application. This thesis also justifies the relations between the "node degree" (the number of neighbor(s) of a node) and network connectivity through mathematic analysis, and proves the effectiveness of various types of controllers that can adjust power transmission of the IoT nodes in response to node failures. The controllers also take into consideration the energy consumption as part of the control goals. The evaluation is performed and comparison is made with other representative algorithms. The simulation results show that the proposals in this thesis can tolerate more random node failures and save more energy when compared with those representative algorithms. Additionally, the simulations demonstrate that the use of the bio-inspired algorithms allows optimizing the parameters of the controller. With respect to the implementation in a real system, the programming model called OSGi (Open Service Gateway Initiative) is integrated with the proposals in order to create a self-adaptive middleware, especially reconfiguring the software components at runtime when failures occur. The outcomes of this thesis contribute to theoretic research and practical applications of resilient topology control for large and distributed networks. The presented controller designs and optimization algorithms can be viewed as novel trials of the control and optimization techniques for the coming era of the IoT. The contributions of this thesis can be summarized as follows: (1) Mathematically, the fault-tolerant probability of a large-scale stochastic network is analyzed. It is studied how the probability of network connectivity depends on the communication range of the nodes, and what is the minimum number of neighbors to be added for network re-connection. (2) A fuzzy-logic control system is proposed, which obtains the desired node degree and in turn maintains the network connectivity when it is subject to node failures. There are different types of fuzzy-logic controllers evaluated by simulations, and the results demonstrate the improvement of fault-tolerant capability as compared to some other representative algorithms. (3) A simpler but more applicable approach, the two-loop control system is further investigated, and its control parameters are optimized by using some heuristic algorithms such as Cross Entropy (CE), Particle Swarm Optimization (PSO), and Differential Evolution (DE). (4) Most of the designs are evaluated by means of simulations, but part of the proposals are implemented and tested in a real-world application by combining the self-adaptive software technique and the control algorithms which are presented in this thesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Las herramientas de configuración basadas en lenguajes de alto nivel como LabVIEW permiten el desarrollo de sistemas de adquisición de datos basados en hardware reconfigurable FPGA muy complejos en un breve periodo de tiempo. La estandarización del ciclo de diseño hardware/software y la utilización de herramientas como EPICS facilita su integración con la plataforma de adquisición y control ITER CODAC CORE SYSTEM (CCS) basada en Linux. En este proyecto se propondrá una metodología que simplificará el ciclo completo de integración de plataformas novedosas, como cRIO, en las que el funcionamiento del hardware de adquisición puede ser modificado por el usuario para que éste se amolde a sus requisitos específicos. El objetivo principal de este proyecto fin de master es realizar la integración de un sistema cRIO NI9159 y diferentes módulos de E/S analógica y digital en EPICS y en CODAC CORE SYSTEM (CCS). Este último consiste en un conjunto de herramientas software que simplifican la integración de los sistemas de instrumentación y control del experimento ITER. Para cumplir el objetivo se realizarán las siguientes tareas: • Desarrollo de un sistema de adquisición de datos basado en FPGA con la plataforma hardware CompactRIO. En esta tarea se realizará la configuración del sistema y la implementación en LabVIEW para FPGA del hardware necesario para comunicarse con los módulos: NI9205, NI9264, NI9401.NI9477, NI9426, NI9425 y NI9476 • Implementación de un driver software utilizando la metodología de AsynDriver para integración del cRIO con EPICS. Esta tarea requiere definir todos los records necesarios que exige EPICS y crear las interfaces adecuadas que permitirán comunicarse con el hardware. • Implementar la descripción del sistema cRIO y del driver EPICS en el sistema de descripción de plantas de ITER llamado SDD. Esto automatiza la creación de las aplicaciones de EPICS que se denominan IOCs. SUMMARY The configuration tools based in high-level programing languages like LabVIEW allows the development of high complex data acquisition systems based on reconfigurable hardware FPGA in a short time period. The standardization of the hardware/software design cycle and the use of tools like EPICS ease the integration with the data acquisition and control platform of ITER, the CODAC Core System based on Linux. In this project a methodology is proposed in order to simplify the full integration cycle of new platforms like CompactRIO (cRIO), in which the data acquisition functionality can be reconfigured by the user to fits its concrete requirements. The main objective of this MSc final project is to develop the integration of a cRIO NI-9159 and its different analog and digital Input/Output modules with EPICS in a CCS. The CCS consists of a set of software tools that simplifies the integration of instrumentation and control systems in the International Thermonuclear Reactor (ITER) experiment. To achieve such goal the following tasks are carried out: • Development of a DAQ system based on FPGA using the cRIO hardware platform. This task comprehends the configuration of the system and the implementation of the mandatory hardware to communicate to the I/O adapter modules NI9205, NI9264, NI9401, NI9477, NI9426, NI9425 y NI9476 using LabVIEW for FPGA. • Implementation of a software driver using the asynDriver methodology to integrate such cRIO system with EPICS. This task requires the definition of the necessary EPICS records and the creation of the appropriate interfaces that allow the communication with the hardware. • Develop the cRIO system’s description and the EPICS driver in the ITER plant description tool named SDD. This development will automate the creation of EPICS applications, called IOCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En esta tesis se presenta el desarrollo de un esquema de cooperación entre vehículos terrestres (UGV) y aéreos (UAV) no tripulados, que sirve de base para conformar dos flotas de robots autónomos (denominadas FRACTAL y RoMA). Con el fin de comprobar, en diferentes escenarios y con diferente tareas, la validez de las estrategias de coordinación y cooperación propuestas en la tesis se utilizan los robots de la flota FRACTAL, que sirven como plataforma de prueba para tareas como el uso de vehículos aéreos y terrestres para apoyar labores de búsqueda y rescate en zonas de emergencia y la cooperación de una flota de robots para labores agrícolas. Se demuestra además, que el uso de la técnica de control no lineal conocida como Control por Modos Deslizantes puede ser aplicada no solo para conseguir la navegación autónoma individual de un robot aéreo o terrestre, sino también en tareas que requieren la navegación coordinada y sin colisiones de varios robots en un ambiente compartido. Para esto, se conceptualiza teóricamente el uso de la técnica de Control por Modos Deslizantes como estrategia de coordinación entre robots, extendiendo su aplicación a robots no-holonómicos en R2 y a robots aéreos en el espacio tridimensional. Después de dicha contextualización teórica, se analizan las condiciones necesarias para determinar la estabilidad del sistema multi-robot controlado y, finalmente, se comprueban las características de estabilidad y robustez ofrecidas por esta técnica de control. Tales comprobaciones se hacen simulando la navegación segura y eficiente de un grupo de UGVs para la detección de posibles riesgos ambientales, aprovechando la información aportada por un UAV. Para estas simulaciones se utilizan los modelos matemáticos de robots de la flota RoMA. Estas tareas coordinadas entre los robots se hacen posibles gracias a la efectividad, estabilidad y robustez de las estrategias de control que se desarrollan como núcleo fundamental de este trabajo de investigación. ABSTRACT This thesis presents the development of a cooperation scheme between unmanned ground (UGV) and aerial (UAV) vehicles. This scheme is the basis for forming two fleets of autonomous robots (called FRACTAL and RoMA). In order to assess, in different settings and on different tasks, the validity of the coordination and cooperation strategies proposed in the thesis, the FRACTAL fleet robots serves as a test bed for tasks like using coordinated aerial and ground vehicles to support search and rescue work in emergency scenarios or cooperation of a fleet of robots for agriculture. It is also shown that using the technique of nonlinear control known as Sliding Modes Control (SMC) can be applied not only for individual autonomous navigation of an aircraft or land robot, but also in tasks requiring the coordinated navigation of several robots, without collisions, in a shared environment. To this purpose, a strategy of coordination between robots using Sliding Mode Control technique is theoretically conceptualized, extending its application to non-holonomic robots in R2 and aerial robots in three-dimensional space. After this theoretical contextualization, the stability conditions of multi-robot system are analyzed, and finally, the stability and robustness characteristics are validated. Such validations are made with simulated experiments about the safe and efficient navigation of a group of UGV for the detection of possible environmental hazards, taking advantage of the information provided by a UAV. This simulations are made using mathematical models of RoMA fleet robots. These coordinated tasks of robots fleet are made possible thanks to the effectiveness, stability and robustness of the control strategies developed as core of this research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Control robotizado de malas hierbas combinando flotas aéreas y terrestres

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La creación de un sistema teleoperado robótico es un gran reto y en esta memoria se ha querido dejar muestra de ello. La robótica es un campo de aplicación de la ingeniería multidisciplinar que requiere conocimientos mecánicos, de control, de electrónica, de programación...esto implica que cualquier proyecto que se desarrolle en este ámbito requerirá de un arduo trabajo por parte del ingeniero de que lo lleve a cabo. En cuanto al proyecto desarrollado, se han podido implementar varias técnicas de control remoto estudiadas durante el máster, aunque el resultado obtenido no ha podido ser más completo por problemas con el soporte técnico de la empresa proveedora del robot. La mejor opción para poder haber hecho un control fuerza posición que de verdad reflejase las fuerzas y pares experimentados en el entorno habría sido poder usar el sensor que Schunk le vendió al grupo. Sin embargo el sensor no funcionaba y el servicio técnico tras dos preguntas se desentendió del problema obligándonos a decantarnos por la opción de la estimación de fuerzas por medio de la matriz jacobiana. Otro inconveniente experimentado durante la estancia fue la rotura de uno de los encoders del cardán del Phantom, lo que nos producía errores en la lectura de los datos de orientación. Se sufrieron bastantes problemas por culpa de las lecturas erróneas con valores erráticos en los sensores de orientación del stylus. Pero a pesar de todos los inconvenientes encontrados se consiguió crear un sistema de teleoperación bastante competente que agradó en buena medida a los jefes de la sección por sus cualidades y sus perspectivas de futuro. En nuestra experimentación, el problema común de la operación remota, como es el retraso en las comunicaciones no lo experimentamos por la magnífica red de comunicaciones. Cierto es que no se pudieron llevar a cabo pruebas con el módulo 4G dentro del túnel cuando las latencias de respuesta eran especialmente altas. Aun así, en zonas de buena cobertura la latencia en las comunicaciones no suponía a priori un problema para el control del robot. Será obligación de los futuros desarrollos evaluar hasta el último detalle la problemática que el retraso en las comunicaciones en ciertas zonas del túnel puede acarrear en el sistema. El trabajo desarrollado para este proyecto es únicamente una avanzadilla de lo que puede ser implementado para los sistemas de teleoperación del CERN. Este trabajo fin de máster ha iniciado una hoja de ruta de diseños dentro del grupo EN-STI-ECE, mostrando de qué son capaces nuevas tecnologías como ROS y su ecosistema.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este proyecto fin de carrera trata de mejorar los sistemas actuales de control en la visualización de diapositivas. La solución adoptada constará de un sistema con modelo cliente-servidor. El servidor formado por un mini ordenador, en este caso una Raspberry Pi, que estará conectado al proyector de video. Este servidor se mantendrá a la espera de recibir una conexión entrante vía Bluetooth. Una vez se realice la conexión interpretará los comandos mandados por el cliente a través de una API con formato JSON y realizará las acciones indicadas para el control de la presentación. El cliente será una aplicación móvil para dispositivos Android. A través de ella el profesor accederá al servidor escaneando un código QR que será proyectado y una vez conectado enviará los comandos de control de la presentación, tales como abrir una presentación, avanzar y retroceder diapositiva, etc. La solución final deberá ser eficiente, sencilla de utilizar y con un bajo coste para resultar atractiva y ser así útil en el mundo real. Para ello se contará con valores añadidos como el poder iniciar la presentación desde el dispositivo móvil, el mostrar las notas de la diapositiva actual o contar con un temporizador para permitir un mejor control sobre el tiempo disponible para la presentación. ABSTRACT. This final project pursues the improvement of the current presentation control systems. The solution it provides is based on a server-client architecture. The server will be a mini PC, a Raspberry Pi model in this case, that will be connected to a video projector or a screen monitor. This server will remain idle waiting for an incoming Bluetooth connection. Once the connection is accepted the server will parse the commands sent by the client through a JSON API and will execute them accordingly to control the system. The client we decided to develop is an Android application. The speaker will be able to connect with the server by scanning a QR code that will be generated and displayed into the projector or screen monitor. Once the connection is accepted the client will sent the commands to control the slides, such as opening a presentation, move forward and backwards, etc. The adopted solution must be efficient, easy to use and with low cost to be appealing and useful to the real world. To accomplish the task this project will count with improvements over the current systems, such as the possibility to open a presentation from the smartphone, the visualization of the current slide notes from the mobile phone and a countdown timer to have a better control over the available time for the presentation.