840 resultados para Image-based cytometry
Resumo:
The efficiency in image classification tasks can be improved using combined information provided by several sources, such as shape, color, and texture visual properties. Although many works proposed to combine different feature vectors, we model the descriptor combination as an optimization problem to be addressed by evolutionary-based techniques, which compute distances between samples that maximize their separability in the feature space. The robustness of the proposed technique is assessed by the Optimum-Path Forest classifier. Experiments showed that the proposed methodology can outperform individual information provided by single descriptors in well-known public datasets. © 2012 IEEE.
Resumo:
The presence of residual endodontic sealer in the pulp chamber may cause discoloration of the dental crown and interfere with the adhesion of restorative materials. The aim of this study was to compare the efficacy of different solvents in removing residues of an epoxy resin-based sealer (AH Plus) from the dentin walls of the pulp chamber, by scanning electron microscopy (SEM). Forty-four bovine incisor dental crown fragments were treated with 17% EDTA and 2.5% NaOCl. Specimens received a coating of AH Plus and were left undisturbed for 5 min. Then, specimens were divided in four groups (n = 10) and cleaned with one of the following solutions: isopropyl alcohol, 95% ethanol, acetone solution, or amyl acetate solution. Negative controls (n = 2) did not receive AH Plus, while in positive controls (n = 2) the sealer was not removed. AH Plus removal was evaluated by SEM, and a score system was applied. Data were analyzed by Kruskal-Wallis and Dunn tests. None of the solutions tested was able to completely remove AH Plus from the dentin of the pulp chamber. Amyl acetate performed better than 95% ethanol and isopropyl alcohol (p < 0.05), but not better than acetone (p > 0.05) in removing the sealer from dentin. No significant differences were observed between acetone, 95% ethanol, and isopropyl alcohol (p > 0.05). It was concluded that amyl acetate and acetone may be good options for cleaning the pulp chamber after obturation with AH Plus. SCANNING 35:17-21, 2013. © 2012 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
Resumo:
Digital techniques have been developed and validated to assess semiquantitatively immunohistochemical nuclear staining. Currently visual classification is the standard for qualitative nuclear evaluation. Analysis of pixels that represents the immunohistochemical labeling can be more sensitive, reproducible and objective than visual grading. This study compared two semiquantitative techniques of digital image analysis with three techniques of visual analysis imaging to estimate the p53 nuclear immunostaining. Methods: Sixty-three sun-exposed forearm-skin biopsies were photographed and submitted to three visual analyses of images: the qualitative visual evaluation method (0 to 4 +), the percentage of labeled nuclei and HSCORE. Digital image analysis was performed using ImageJ 1.45p; the density of nuclei was scored per ephitelial area (DensNU) and the pixel density was established in marked suprabasal epithelium (DensPSB). Results: Statistical significance was found in: the agreement and correlation among the visual estimates of evaluators, correlation among the median visual score of the evaluators, the HSCORE and the percentage of marked nuclei with the DensNU and DensPSB estimates. DensNU was strongly correlated to the percentage of p53-marked nuclei in the epidermis, and DensPSB with the HSCORE. Conclusion: The parameters presented herein can be applied in routine analysis of immunohistochemical nuclear staining of epidermis. © 2012 John Wiley & Sons A/S.
Resumo:
The water column overlying the submerged aquatic vegetation (SAV) canopy presents difficulties when using remote sensing images for mapping such vegetation. Inherent and apparent water optical properties and its optically active components, which are commonly present in natural waters, in addition to the water column height over the canopy, and plant characteristics are some of the factors that affect the signal from SAV mainly due to its strong energy absorption in the near-infrared. By considering these interferences, a hypothesis was developed that the vegetation signal is better conserved and less absorbed by the water column in certain intervals of the visible region of the spectrum; as a consequence, it is possible to distinguish the SAV signal. To distinguish the signal from SAV, two types of classification approaches were selected. Both of these methods consider the hemispherical-conical reflectance factor (HCRF) spectrum shape, although one type was supervised and the other one was not. The first method adopts cluster analysis and uses the parameters of the band (absorption, asymmetry, height and width) obtained by continuum removal as the input of the classification. The spectral angle mapper (SAM) was adopted as the supervised classification approach. Both approaches tested different wavelength intervals in the visible and near-infrared spectra. It was demonstrated that the 585 to 685-nm interval, corresponding to the green, yellow and red wavelength bands, offered the best results in both classification approaches. However, SAM classification showed better results relative to cluster analysis and correctly separated all spectral curves with or without SAV. Based on this research, it can be concluded that it is possible to discriminate areas with and without SAV using remote sensing. © 2013 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
Breast cancer is the most common cancer among women. In CAD systems, several studies have investigated the use of wavelet transform as a multiresolution analysis tool for texture analysis and could be interpreted as inputs to a classifier. In classification, polynomial classifier has been used due to the advantages of providing only one model for optimal separation of classes and to consider this as the solution of the problem. In this paper, a system is proposed for texture analysis and classification of lesions in mammographic images. Multiresolution analysis features were extracted from the region of interest of a given image. These features were computed based on three different wavelet functions, Daubechies 8, Symlet 8 and bi-orthogonal 3.7. For classification, we used the polynomial classification algorithm to define the mammogram images as normal or abnormal. We also made a comparison with other artificial intelligence algorithms (Decision Tree, SVM, K-NN). A Receiver Operating Characteristics (ROC) curve is used to evaluate the performance of the proposed system. Our system is evaluated using 360 digitized mammograms from DDSM database and the result shows that the algorithm has an area under the ROC curve Az of 0.98 ± 0.03. The performance of the polynomial classifier has proved to be better in comparison to other classification algorithms. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Plant phenology is one of the most reliable indicators of species responses to global climate change, motivating the development of new technologies for phenological monitoring. Digital cameras or near remote systems have been efficiently applied as multi-channel imaging sensors, where leaf color information is extracted from the RGB (Red, Green, and Blue) color channels, and the changes in green levels are used to infer leafing patterns of plant species. In this scenario, texture information is a great ally for image analysis that has been little used in phenology studies. We monitored leaf-changing patterns of Cerrado savanna vegetation by taking daily digital images. We extract RGB channels from the digital images and correlate them with phenological changes. Additionally, we benefit from the inclusion of textural metrics for quantifying spatial heterogeneity. Our first goals are: (1) to test if color change information is able to characterize the phenological pattern of a group of species; (2) to test if the temporal variation in image texture is useful to distinguish plant species; and (3) to test if individuals from the same species may be automatically identified using digital images. In this paper, we present a machine learning approach based on multiscale classifiers to detect phenological patterns in the digital images. Our results indicate that: (1) extreme hours (morning and afternoon) are the best for identifying plant species; (2) different plant species present a different behavior with respect to the color change information; and (3) texture variation along temporal images is promising information for capturing phenological patterns. Based on those results, we suggest that individuals from the same species and functional group might be identified using digital images, and introduce a new tool to help phenology experts in the identification of new individuals from the same species in the image and their location on the ground. © 2013 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a novel segmentation method for cuboidal cell nuclei in images of prostate tissue stained with hematoxylin and eosin. The proposed method allows segmenting normal, hyperplastic and cancerous prostate images in three steps: pre-processing, segmentation of cuboidal cell nuclei and post-processing. The pre-processing step consists of applying contrast stretching to the red (R) channel to highlight the contrast of cuboidal cell nuclei. The aim of the second step is to apply global thresholding based on minimum cross entropy to generate a binary image with candidate regions for cuboidal cell nuclei. In the post-processing step, false positives are removed using the connected component method. The proposed segmentation method was applied to an image bank with 105 samples and measures of sensitivity, specificity and accuracy were compared with those provided by other segmentation approaches available in the specialized literature. The results are promising and demonstrate that the proposed method allows the segmentation of cuboidal cell nuclei with a mean accuracy of 97%. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
In this paper a photogrammetric method is proposed for refining 3D building roof contours extracted from airborne laser scanning data. It is assumed that laser-derived planar faces of roofs are potentially accurate, while laser-derived building roof contours are not well defined. First, polygons representing building roof contours are extracted from a high-resolution aerial image. In the sequence, straight-line segments delimitating each building roof polygon are projected onto the corresponding laser-derived roof planes by using a new line-based photogrammetric model. Finally, refined 3D building roof contours are reconstructed by connecting every pair of photogrammetrically- projected adjacent straight lines. The obtained results showed that the proposed approach worked properly, meaning that the integration of image data and laser scanning data allows better results to be obtained, when compared to the results generated by using only laser scanning data. © 2013 IEEE.
Resumo:
In this paper we propose a novel method for shape analysis called HTS (Hough Transform Statistics), which uses statistics from Hough Transform space in order to characterize the shape of objects in digital images. Experimental results showed that the HTS descriptor is robust and presents better accuracy than some traditional shape description methods. Furthermore, HTS algorithm has linear complexity, which is an important requirement for content based image retrieval from large databases. © 2013 IEEE.
Resumo:
Summary: The objective of this work was to evaluate the sperm motility of 13 Steindachneridion parahybae males using open-source software (ImageJ/CASA plugin). The sperm activation procedure and image capture were initiated after semen collection. Four experimental phases were defined from the videos captured of each male as follows: (i) standardization of a dialogue box generated by the CASA plugin within ImageJ; (ii) frame numbers used to perform the analysis; (iii) post-activation motility between 10 and 20 s with analysis at each 1 s; and (iv) post-activation motility between 10 and 50 s with analysis at each 10 s. The settings used in the CASA dialogue box were satisfactory, and the results were consistent. These analyses should be performed using 50 frames immediately after sperm activation because spermatozoa quickly lose their vigor. At 10 s post-activation, 89.1% motile sperm was observed with 107.2 μm s-1 curvilinear velocity, 83.6 μm s-1 average path velocity, 77.1 μm s-1 straight line velocity; 91.6% were of straightness and 77.1% of wobble. The CASA plugin within ImageJ can be applied in sperm analysis of the study species by using the established settings. © 2013 Blackwell Verlag GmbH.
Resumo:
Objective: To compare dental plaster model (DPM) and cone-beam computed tomography (CBCT) in the measurement of the dental arches, and investigate whether CBCT image artifacts compromise the reliability of such measurements.Materials and Methods: Twenty patients were divided into two groups based on the presence or absence of metallic restorations in the posterior teeth. Both dental arches of the patients were scanned with the CBCT unit i-CAT, and DPMs were obtained. Two examiners obtained eight arch measurements on the CBCT images and DPMs and repeated this procedure 15 days later. The arch measurements of each patient group were compared separately by the Wilcoxon rank sum (Mann-Whitney U) test, with a significance level of 5% (alpha = .05). Intraclass correlation measured the level of intraobserver agreement.Results: Patients with healthy teeth showed no significant difference between all DPM and CBCT arch measurements (P > .05). Patients with metallic restoration showed significant difference between DPM and CBCT for the majority of the arch measurements (P > .05). The two examiners showed excellent intraobserver agreement for both measuring methods with intraclass correlation coefficient higher than 0.95.Conclusion: CBCT provided the same accuracy as DPM in the measurement of the dental arches, and was negatively influenced by the presence of image artifacts.
Resumo:
Hepatocellular carcinoma (HCC) is a primary tumor of the liver. After local therapies, the tumor evaluation is based on the mRECIST criteria, which involves the measurement of the maximum diameter of the viable lesion. This paper describes a computed methodology to measure through the contrasted area of the lesions the maximum diameter of the tumor by a computational algorithm 63 computed tomography (CT) slices from 23 patients were assessed. Non-contrasted liver and HCC typical nodules were evaluated, and a virtual phantom was developed for this purpose. Optimization of the algorithm detection and quantification was made using the virtual phantom. After that, we compared the algorithm findings of maximum diameter of the target lesions against radiologist measures. Computed results of the maximum diameter are in good agreement with the results obtained by radiologist evaluation, indicating that the algorithm was able to detect properly the tumor limits A comparison of the estimated maximum diameter by radiologist versus the algorithm revealed differences on the order of 0.25 cm for large-sized tumors (diameter > 5 cm), whereas agreement lesser than 1.0cm was found for small-sized tumors. Differences between algorithm and radiologist measures were accurate for small-sized tumors with a trend to a small increase for tumors greater than 5 cm. Therefore, traditional methods for measuring lesion diameter should be complemented with non-subjective measurement methods, which would allow a more correct evaluation of the contrast-enhanced areas of HCC according to the mRECIST criteria.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper presents a Computer Aided Diagnosis (CAD) system that automatically classifies microcalcifications detected on digital mammograms into one of the five types proposed by Michele Le Gal, a classification scheme that allows radiologists to determine whether a breast tumor is malignant or not without the need for surgeries. The developed system uses a combination of wavelets and Artificial Neural Networks (ANN) and is executed on an Altera DE2-115 Development Kit, a kit containing a Field-Programmable Gate Array (FPGA) that allows the system to be smaller, cheaper and more energy efficient. Results have shown that the system was able to correctly classify 96.67% of test samples, which can be used as a second opinion by radiologists in breast cancer early diagnosis. (C) 2013 The Authors. Published by Elsevier B.V.