978 resultados para Identification accuracy
Resumo:
We have identified C7orf11, which localizes to the nucleus and is expressed in fetal hair follicles, as the first disease gene for nonphotosensitive trichothiodystrophy (TTD). C7orf11 maps to chromosome 7p14, and the disease locus has been designated "TTDN1" (TTD nonphotosensitive 1). Mutations were found in patients with Amish brittle-hair syndrome and in other nonphotosensititive TTD cases with mental retardation and decreased fertility but not in patients with Sabinas syndrome or Pollitt syndrome. Therefore, genetic heterogeneity in nonphotosensitive TTD is a feature similar to that observed in photosensitive TTD, which is caused by mutations in transcription factor II H (TFIIH) subunit genes. Comparative immunofluorescence analysis, however, suggests that C7orf11 does not influence TFIIH directly. Given the absence of cutaneous photosensitivity in the patients with C7orf11 mutations, together with the protein's nuclear localization, C7orf11 may be involved in transcription but not DNA repair.
Resumo:
In recent years there has been increasing concern about the identification of parameters in dynamic stochastic general equilibrium (DSGE) models. Given the structure of DSGE models it may be difficult to determine whether a parameter is identified. For the researcher using Bayesian methods, a lack of identification may not be evident since the posterior of a parameter of interest may differ from its prior even if the parameter is unidentified. We show that this can even be the case even if the priors assumed on the structural parameters are independent. We suggest two Bayesian identification indicators that do not suffer from this difficulty and are relatively easy to compute. The first applies to DSGE models where the parameters can be partitioned into those that are known to be identified and the rest where it is not known whether they are identified. In such cases the marginal posterior of an unidentified parameter will equal the posterior expectation of the prior for that parameter conditional on the identified parameters. The second indicator is more generally applicable and considers the rate at which the posterior precision gets updated as the sample size (T) is increased. For identified parameters the posterior precision rises with T, whilst for an unidentified parameter its posterior precision may be updated but its rate of update will be slower than T. This result assumes that the identified parameters are pT-consistent, but similar differential rates of updates for identified and unidentified parameters can be established in the case of super consistent estimators. These results are illustrated by means of simple DSGE models.
Resumo:
An ammonium chloride erythrocyte-lysing procedure was used to prepare a bacterial pellet from positive blood cultures for direct matrix-assisted laser desorption-ionization time of flight (MALDI-TOF) mass spectrometry analysis. Identification was obtained for 78.7% of the pellets tested. Moreover, 99% of the MALDI-TOF identifications were congruent at the species level when considering valid scores. This fast and accurate method is promising.
Resumo:
AIMS/HYPOTHESIS: MicroRNAs are key regulators of gene expression involved in health and disease. The goal of our study was to investigate the global changes in beta cell microRNA expression occurring in two models of obesity-associated type 2 diabetes and to assess their potential contribution to the development of the disease. METHODS: MicroRNA profiling of pancreatic islets isolated from prediabetic and diabetic db/db mice and from mice fed a high-fat diet was performed by microarray. The functional impact of the changes in microRNA expression was assessed by reproducing them in vitro in primary rat and human beta cells. RESULTS: MicroRNAs differentially expressed in both models of obesity-associated type 2 diabetes fall into two distinct categories. A group including miR-132, miR-184 and miR-338-3p displays expression changes occurring long before the onset of diabetes. Functional studies indicate that these expression changes have positive effects on beta cell activities and mass. In contrast, modifications in the levels of miR-34a, miR-146a, miR-199a-3p, miR-203, miR-210 and miR-383 primarily occur in diabetic mice and result in increased beta cell apoptosis. These results indicate that obesity and insulin resistance trigger adaptations in the levels of particular microRNAs to allow sustained beta cell function, and that additional microRNA deregulation negatively impacting on insulin-secreting cells may cause beta cell demise and diabetes manifestation. CONCLUSIONS/INTERPRETATION: We propose that maintenance of blood glucose homeostasis or progression toward glucose intolerance and type 2 diabetes may be determined by the balance between expression changes of particular microRNAs.
Resumo:
OBJECTIVE: To test the accuracy of a new pulse oximeter sensor based on transmittance and reflectance. This sensor makes transillumination of tissue unnecessary and allows measurements on the hand, forearm, foot, and lower limb. DESIGN: Prospective, open, nonrandomized criterion standard study. SETTING: Neonatal intensive care unit, tertiary care center. PATIENTS: Sequential sample of 54 critically ill neonates (gestational age 27 to 42 wks; postnatal age 1 to 28 days) with arterial catheters in place. MEASUREMENTS AND MAIN RESULTS: A total of 99 comparisons between pulse oximetry and arterial saturation were obtained. Comparison of femoral or umbilical arterial blood with transcutaneous measurements on the lower limb (n = 66) demonstrated an excellent correlation (r2 = .96). The mean difference was +1.44% +/- 3.51 (SD) % (range -11% to +8%). Comparison of the transcutaneous values with the radial artery saturation from the corresponding upper limb (n = 33) revealed a correlation coefficient of 0.94 with a mean error of +0.66% +/- 3.34% (range -6% to +7%). The mean difference between noninvasive and invasive measurements was least with the test sensor on the hand, intermediate on the calf and arm, and greatest on the foot. The mean error and its standard deviation were slightly larger for arterial saturation values < 90% than for values > or = 90%. CONCLUSION: Accurate pulse oximetry saturation can be acquired from the hand, forearm, foot, and calf of critically ill newborns using this new sensor.
Resumo:
OBJECTIVES: To document biopsychosocial profiles of patients with rheumatoid arthritis (RA) by means of the INTERMED and to correlate the results with conventional methods of disease assessment and health care utilization. METHODS: Patients with RA (n = 75) were evaluated with the INTERMED, an instrument for assessing case complexity and care needs. Based on their INTERMED scores, patients were compared with regard to severity of illness, functional status, and health care utilization. RESULTS: In cluster analysis, a 2-cluster solution emerged, with about half of the patients characterized as complex. Complex patients scoring especially high in the psychosocial domain of the INTERMED were disabled significantly more often and took more psychotropic drugs. Although the 2 patient groups did not differ in severity of illness and functional status, complex patients rated their illness as more severe on subjective measures and on most items of the Medical Outcomes Study Short Form 36. Complex patients showed increased health care utilization despite a similar biologic profile. CONCLUSIONS: The INTERMED identified complex patients with increased health care utilization, provided meaningful and comprehensive patient information, and proved to be easy to implement and advantageous compared with conventional methods of disease assessment. Intervention studies will have to demonstrate whether management strategies based on INTERMED profiles can improve treatment response and outcome of complex patients.
Resumo:
Introduction: As part of the MicroArray Quality Control (MAQC)-II project, this analysis examines how the choice of univariate feature-selection methods and classification algorithms may influence the performance of genomic predictors under varying degrees of prediction difficulty represented by three clinically relevant endpoints. Methods: We used gene-expression data from 230 breast cancers (grouped into training and independent validation sets), and we examined 40 predictors (five univariate feature-selection methods combined with eight different classifiers) for each of the three endpoints. Their classification performance was estimated on the training set by using two different resampling methods and compared with the accuracy observed in the independent validation set. Results: A ranking of the three classification problems was obtained, and the performance of 120 models was estimated and assessed on an independent validation set. The bootstrapping estimates were closer to the validation performance than were the cross-validation estimates. The required sample size for each endpoint was estimated, and both gene-level and pathway-level analyses were performed on the obtained models. Conclusions: We showed that genomic predictor accuracy is determined largely by an interplay between sample size and classification difficulty. Variations on univariate feature-selection methods and choice of classification algorithm have only a modest impact on predictor performance, and several statistically equally good predictors can be developed for any given classification problem.
Resumo:
Schwann cells synthesize a large amount of membrane that form a specialized structure called myelin that surrounds axons and facilitate the transmission of electrical signal along neurons in peripheral nervous system (PNS). Previous studies demonstrated that both Schwann cell differentiation and de-differentiation (in the situation of a nerve injury or demyelinating disease) are regulated by cell-intrinsic regulators including several transcription factors. In particular, the de-differentiation of mature Schwann cells is driven by the activation of multiple negative regulators of myelination including Sox2, c-Jun, Notch and Pax3, all usually expressed in immature Schwann cells and suppressed at the onset of myelination. In order to identify new regulators of myelination involved in the development of the PNS, we analyzed the gene-expression profiling data from developing PNS and from three models of demyelinating neuropathies. This analysis led to the identification of Sox4, a member of the Sox family of transcription factors, as a potential candidate. To characterize the molecular function of Sox4 in PNS, we generated two transgenic lines of mice, which overexpress Sox4 specifically in Schwann cells. Detailed analysis of these mice showed that the overexpression of Sox4 in Schwann cells causes a delay in progression of myelination between post-natal day 2 (P2) and P5. Our in vitro analysis suggested that Sox4 cDNA can be overexpressed while the protein translation is tightly regulated. Interestingly, we observed that Sox4 protein is stabilized in nerves of the CMT4C mouse, a model of the human neuropathy. We therefore crossed Sox4 transgenic mice with CMT4C mice and we observed that Sox4 overexpression exacerbated the neuropathy phenotype in these mice. While recognized as being crucial for the normal function of both neurons and myelinating glial cells, the processes that regulate the beginning of myelination and the nature of the neuro-glial cross-talk remains mostly unknown. In order to gain insight into the molecular pathways involved in the interactions between neurons and associated glial cells, we developed a neuron-glia co-culture system based on microfluidic chambers and successfully induced myelination in this system by ascorbic acid. Importantly, we observed that in addition to acting on Schwann cells, ascorbic acid also modulate neuronal/axonal NRG1/ErbB2-B3 signalling. The experimental setting used in our study thus allowed us to discover a novel phenomena of propagation for myelination in vitro. The further characterization of this event brought us to identify other compounds able to induce myelination: ADAMs secretases inhibitor GM6001 and cyclic-AMP. The results generated during my thesis project are therefore not only important for the advancement of our understanding of how the PNS works, but may also potentially help to develop new therapies aiming at improvement of PNS myelination under disease conditions. - Les cellules de Schwann synthétisent une grande quantité de membrane formant une structure spécialisée appelée myéline qui entoure les axones et facilite la transmission du signal électrique le long des neurones du système nerveux périphérique (SNP). Des études antérieures ont démontré que la différenciation et la dédifférenciation des cellules de Schwann (dans la situation d'une lésion nerveuse ou d'une maladie démyélinisante) sont régulées par des régulateurs cellulaires intrinsèques, incluant plusieurs facteurs de transcription. En particulier, la dédifférenciation des cellules de Schwann matures est contrôlée par l'activation de plusieurs régulateurs négatifs de la myélinisation dont Sox2, c-Jun, Notch et Pax3, tous habituellement exprimés dans des cellules de Schwann immatures et supprimés au début de la myélinisation. Afin d'identifier de nouveaux régulateurs de myélinisation impliqués dans le développement du SNP, nous avons analysé le profil d'expression génique durant le développement du SNP ainsi que dans trois modèles de neuropathies démyélinisantes. Cette analyse a mené à l'identification de Sox4, un membre de la famille des facteurs de transcription Sox, comme étant un candidat potentiel. Dans le but de caractériser la fonction moléculaire de Sox4 dans le SNP, nous avons généré deux lignées transgéniques de souris qui surexpriment Sox4 spécifiquement dans les cellules de Schwann. L'analyse détaillée de ces souris a montré que la surexpression de Sox4 dans les cellules de Schwann provoque un retard dans la progression de la myélinisation entre le jour postnatal 2 (P2) et P5. Notre analyse in vitro a suggéré que l'ADNc de Sox4 peut être surexprimé alors que la traduction des protéines est quand à elle étroitement régulée. De façon intéressante, nous avons observé que la protéine Sox4 est stabilisée dans les nerfs des souris CMT4C, un modèle de neuropathie humaine. Nous avons donc croisé les souris transgéniques Sox4 avec des souris CMT4C et avons observé que la surexpression de Sox4 exacerbe le phénotype de neuropathie chez ces souris. Bien que reconnus comme étant cruciaux pour le fonctionnement normal des neurones et des cellules gliales myélinisantes, les processus qui régulent le début de la myélinisation ainsi que la nature des interactions neurone-glie restent largement méconnus. Afin de mieux comprendre les mécanismes moléculaires impliqués dans les interactions entre les neurones et les cellules gliales leur étant associés, nous avons développé un système de co-culture neurone-glie basé sur des chambres microfluidiques et y avons induit avec succès la myélinisation avec de l'acide ascorbique. Étonnamment, nous avons remarqué que, en plus d'agir sur les cellules de Schwann, l'acide ascorbique module également la voie de signalisation neuronale/axonale NRG1/ErbB2-B3. Le protocole expérimental utilisé dans notre étude a ainsi permis de découvrir un nouveau phénomène de propagation de la myélinisation in vitro. La caractérisation plus poussée de ce phénomène nous a menés à identifier d'autres composés capables d'induire la myélinisation: L'inhibiteur de sécrétases ADAMs GM6001 et l'AMP cyclique. Les résultats obtenus au cours de mon projet de thèse ne sont donc pas seulement importants pour l'avancement de notre compréhension sur la façon dont le SNP fonctionne, mais peuvent aussi potentiellement aider à développer de nouvelles thérapies visant à l'amélioration de la myélinisation du SNP dans des conditions pathologiques.
Resumo:
The proteins of adults worms (male and female) of two isolates (BH and RJ) of Shistosoma mansoni were extracted using Triton X-114 phase separation. The SDS-polyacrilamide gel electrophoresis profiles of the three phases (detergent, aqueous and insoluble proteins) obtained were compared after Coomassie blue and silver staining, surface radioiodination and Western blotting. No major differences were detected between the 2 isolates. Of the 25 or more proteins which partitioned into the detergent phase, only about 8 proteins could be surface radiodinated on live adult worms. A comparison was also made between the profiles of mael and females worms, isolated from bisexually infected mice. Two major female-specific and one male-specific band were detected by silver and/or Coomassie staining. The female bands, 32 KDa and 18 KDa, partitioned into the detergent and aqueous phase, respectively. The male-specific band of 42 KDa remained in the insoluble phase. Antigenic differences between male and females protins were detected by Western vlotting using a sera from infected Nectomys squamipes.
Predictors and accuracy of abnormal CT perfusion in 1296 consecutive acute ischemic stroke patients.
Resumo:
Freehand positioning of the femoral drill guide is difficult during hip resurfacing and the surgeon is often unsure of the implant position achieved peroperatively. The purpose of this study was to find out whether, by using a navigation system, acetabular and femoral component positioning could be made easier and more precise. Eighteen patients operated on by the same surgeon were matched by sex, age, BMI, diagnosis and ASA score (nine patients with computer assistance, nine with the regular ancillary). Pre-operative planning was done on standard AP and axial radiographs with CT scan views for the computer-assisted operations. The final position of implants was evaluated by the same radiographs for all patients. The follow-up was at least 1 year. No difference between both groups in terms of femoral component position was observed (p > 0.05). There was also no difference in femoral notching. A trend for a better cup position was observed for the navigated hips, especially for cup anteversion. There was no additional operating time for the navigated hips. Hip navigation for resurfacing surgery may allow improved visualisation and hip implant positioning, but its advantage probably will be more obvious with mini-incisions than with regular incision surgery.
Resumo:
Microsatellite instability (MSI) occurs in 10-20% of colorectal tumours and is associated with good prognosis. Here we describe the development and validation of a genomic signature that identifies colorectal cancer patients with MSI caused by DNA mismatch repair deficiency with high accuracy. Microsatellite status for 276 stage II and III colorectal tumours has been determined. Full-genome expression data was used to identify genes that correlate with MSI status. A subset of these samples (n = 73) had sequencing data for 615 genes available. An MSI gene signature of 64 genes was developed and validated in two independent validation sets: the first consisting of frozen samples from 132 stage II patients; and the second consisting of FFPE samples from the PETACC-3 trial (n = 625). The 64-gene MSI signature identified MSI patients in the first validation set with a sensitivity of 90.3% and an overall accuracy of 84.8%, with an AUC of 0.942 (95% CI, 0.888-0.975). In the second validation, the signature also showed excellent performance, with a sensitivity 94.3% and an overall accuracy of 90.6%, with an AUC of 0.965 (95% CI, 0.943-0.988). Besides correct identification of MSI patients, the gene signature identified a group of MSI-like patients that were MSS by standard assessment but MSI by signature assessment. The MSI-signature could be linked to a deficient MMR phenotype, as both MSI and MSI-like patients showed a high mutation frequency (8.2% and 6.4% of 615 genes assayed, respectively) as compared to patients classified as MSS (1.6% mutation frequency). The MSI signature showed prognostic power in stage II patients (n = 215) with a hazard ratio of 0.252 (p = 0.0145). Patients with an MSI-like phenotype had also an improved survival when compared to MSS patients. The MSI signature was translated to a diagnostic microarray and technically and clinically validated in FFPE and frozen samples.
Resumo:
The ability to identify the species origin of an unknown biological sample is relevant in the fields of human and wildlife forensics. However, the detection of several species mixed in the same sample still remains a challenge. We developed and tested a new approach for mammal DNA identification in mixtures of two or three species, based on the analysis of mitochondrial DNA control region interspecific length polymorphism followed by direct sequencing. Contrary to other published methods dealing with species mixtures, our protocol requires a single universal primer pair and is not based on a pre-defined panel of species. Amplicons can be separated either on agarose gels or using CE. The advantages and limitations of the assay are discussed under different conditions, such as variable template concentration, amplicon sizes and size difference among the amplicons present in the mixture. For the first time, this protocol provides a simple, reliable and flexible method for simultaneous identification of multiple mammalian species from mixtures, without any prior knowledge of the species involved.
Resumo:
STATEMENT OF PROBLEM: The difficulty of identifying the ownership of lost dentures when found is a common and expensive problem in long term care facilities (LTCFs) and hospitals. PURPOSE: The purpose of this study was to evaluate the reliability of using radiofrequency identification (RFID) in the identification of dentures for LTCF residents after 3 and 6 months. MATERIAL AND METHODS: Thirty-eight residents of 2 LTCFs in Switzerland agreed to participate after providing informed consent. The tag was programmed with the family and first names of the participants and then inserted in the dentures. After placement of the tag, the information was read. A second and third assessment to review the functioning of the tag occurred at 3 and 6 months, and defective tags (if present) were reported and replaced. The data were analyzed with descriptive statistics. RESULTS: At the 3-month assessment of 34 residents (63 tags) 1 tag was unreadable and 62 tags (98.2%) were operational. At 6 months, the tags of 27 of the enrolled residents (50 tags) were available for review. No examined tag was defective at this time period. CONCLUSIONS: Within the limits of this study (number of patients, 6-month time span) RFID appears to be a reliable method of tracking and identifying dentures, with only 1 of 65 devices being unreadable at 3 months and 100% of 50 initially placed tags being readable at the end of the trial.