988 resultados para ISGs (Interferon Stimulated Genes)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA methylation has an important impact on normal cell physiology, thus any defects in this mechanism may be related to the development of various diseases In this project we are interested in identifying epigeneticaliy modified genes, in general controlled by processes related to the DNA methylation, by means of a new strategy combining protomic and genomic analyses. First, the two Dimensional-Difference Gel Electrophoresis (2-DIGE) protein analyses of extracts obtained from HCT-116 wt and double knockout for DNMT1 and DNMT3b (DKO) cells revealed 34 proteins overexpressed in the condition of DNMTs depletion. From five genes with higher transcript lavels in DKO cells, comparing with HCT-116 wt. oniy AKR1B1, UCHLl and VIM are melhylated in HCT-116. As expected. the DNA methvlation 1s lost in DKO cells. The rneth,vl ation of VIM and UCHLl promoters in some cancer samples has already been repaired, thus further studies has been focused on AKRlBI. AKR1B1 expression due lo DNA methyiaton of promoter region seems to occur specilfically in the colon cancer cell Iines. which was confirmed in the DNA rnethylation status and expression analyses. performed on 32 different cancer cell lines (including colon, breast, lymphoma, leukemia, neuroblastoma, glioma and lung cancer cell Iines) as well as normal colon and normal lymphocytes samples. AKRIBI expression after treatments with DNA demethvlating agent (AZA) was rescued in 5 coloncancer cell lines (including genetic regulation of the candidate gene. The methylation status of the rest of the genes identified in proteomic analysis was checked by methylation specific PCR (MSP) experiment and all appeared to be unmethylated. The similar research has been done also bv means of Mecp2-null mouse model For 14 selected candidate genes the analyses of expression leveis, methylation Status and MeCP2 interaction with promoters are currently being performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The glucose transporter isoform GLUT2 is expressed in liver, intestine, kidney and pancreatic islet beta cells, as well as in the central nervous system, in neurons, astrocytes and tanycytes. Physiological studies of genetically modified mice have revealed a role for GLUT2 in several regulatory mechanisms. In pancreatic beta cells, GLUT2 is required for glucose-stimulated insulin secretion. In hepatocytes, suppression of GLUT2 expression revealed the existence of an unsuspected glucose output pathway that may depend on a membrane traffic-dependent mechanism. GLUT2 expression is nevertheless required for the physiological control of glucose-sensitive genes, and its inactivation in the liver leads to impaired glucose-stimulated insulin secretion, revealing a liver-beta cell axis, which is likely to be dependent on bile acids controlling beta cell secretion capacity. In the nervous system, GLUT2-dependent glucose sensing controls feeding, thermoregulation and pancreatic islet cell mass and function, as well as sympathetic and parasympathetic activities. Electrophysiological and optogenetic techniques established that Glut2 (also known as Slc2a2)-expressing neurons of the nucleus tractus solitarius can be activated by hypoglycaemia to stimulate glucagon secretion. In humans, inactivating mutations in GLUT2 cause Fanconi-Bickel syndrome, which is characterised by hepatomegaly and kidney disease; defects in insulin secretion are rare in adult patients, but GLUT2 mutations cause transient neonatal diabetes. Genome-wide association studies have reported that GLUT2 variants increase the risks of fasting hyperglycaemia, transition to type 2 diabetes, hypercholesterolaemia and cardiovascular diseases. Individuals with a missense mutation in GLUT2 show preference for sugar-containing foods. We will discuss how studies in mice help interpret the role of GLUT2 in human physiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorescence in situ hybridization of Anopheles darlingi and A. nuneztovari demonstrated nucleolar organizer region activity at the end of the fourth larval instar, when the nucleolar organizer regions underwent gradual condensation. The heteromorphic sex chromosomes showed intraindividual size variation in the rDNA blocks located in the pericentromeric region and this coincided with the location of constitutive heterochromatin (C-banding).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is widely accepted that the rate of evolution (substitution rate) at neutral genes is unaffected by population size fluctuations. This result has implications for the analysis of genetic data in population genetics and phylogenetics, and provides, in particular, a justification for the concept of the molecular clock. Here, we show that the substitution rate at neutral genes does depend on population size fluctuations in the presence of overlapping generations. As both population size fluctuations and overlapping generations are expected to be the norm rather than the exception in natural populations, this observation may be relevant for understanding variation in substitution rates within and between lineages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geographical differences in the prevalence of Helicobacter pylori genes and their association with disease severity have been identified. This study analyzes the prevalences of the cagA gene and alleles of the vacA gene in H. pylori-associated gastroduodenal diseases in isolates from Recife, PE, Brazil. Gastric biopsy of 61 H. pylori-positive patients were submitted to DNA extraction and gene amplification by polymerase chain reaction. Among the 61 patients, 21 suffered from duodenal ulcer (DU) and 40 from gastritis (GT). The prevalence of H. pylori strains harbouring the cagA gene was higher in the DU group (90.5%) than in the GT group (60%) (p = 0.02). The vacA gene was amplified in 56 out of 61 biopsies, of which 43 (76.8%) contained bacteria carrying the s1 allele and 13 (23.2%) the s2. However, the prevalence of the vacA s1 genotying was the same in either DU or GT group. The majority of the s1-typed strains, 39 (90.7%) out of 43, were subtype s1b. In resume there was a strong association between the H. pylori cagA+ gene and DU. However, there were no differences between the DU and GT groups in relation to the vacA s1 and s2 alleles distribution, albeit the subtype s1b was predominat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lactate release by astrocytes is postulated to be of importance for neuroenergetics but its regulation is poorly understood. Basigin, a chaperone protein for specific monocarboxylate transporters (MCTs), represents a putatively important regulatory element for lactate fluxes. Indeed, basigin knockdown by RNA interference in primary cultures of astrocytes partially reduced both proton-driven lactate influx and efflux. But more strikingly, enhancement of lactate efflux induced by glutamate was prevented while the effect of sodium azide was significantly reduced by treatment of cultured astrocytes with anti-basigin small interfering RNA. Enhancement of glucose utilization was unaffected under the same conditions. Basal lactate uptake and release were significantly reduced by MCT1 knockdown, even more so than with basigin knockdown, whereas glutamate-driven or sodium azide-induced enhancement of lactate release was not inhibited by either MCT1, 2, or 4 small interfering RNAs. In conclusion, MCT1 plays a pivotal role in the control of basal proton-driven lactate flux in astrocytes while basigin is only partly involved, most likely via its interaction with MCT1. In contrast, basigin appears to critically regulate the enhancement of lactate release caused by glutamate (or sodium azide) but via an effect on another unidentified transporter at least present in astrocytes in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Gene expression analysis has emerged as a major biological research area, with real-time quantitative reverse transcription PCR (RT-QPCR) being one of the most accurate and widely used techniques for expression profiling of selected genes. In order to obtain results that are comparable across assays, a stable normalization strategy is required. In general, the normalization of PCR measurements between different samples uses one to several control genes (e. g. housekeeping genes), from which a baseline reference level is constructed. Thus, the choice of the control genes is of utmost importance, yet there is not a generally accepted standard technique for screening a large number of candidates and identifying the best ones. Results: We propose a novel approach for scoring and ranking candidate genes for their suitability as control genes. Our approach relies on publicly available microarray data and allows the combination of multiple data sets originating from different platforms and/or representing different pathologies. The use of microarray data allows the screening of tens of thousands of genes, producing very comprehensive lists of candidates. We also provide two lists of candidate control genes: one which is breast cancer-specific and one with more general applicability. Two genes from the breast cancer list which had not been previously used as control genes are identified and validated by RT-QPCR. Open source R functions are available at http://www.isrec.isb-sib.ch/similar to vpopovic/research/ Conclusion: We proposed a new method for identifying candidate control genes for RT-QPCR which was able to rank thousands of genes according to some predefined suitability criteria and we applied it to the case of breast cancer. We also empirically showed that translating the results from microarray to PCR platform was achievable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

beta-glucan, one of the major cell wall components of Saccharomyces cerevisiae, has been found to enhance immune functions. This study investigated in vivo and in vitro effects of beta-glucan on lymphoproliferation and interferon-gamma (IFN-gamma) production by splenic cells from C57BL/6 female mice. All experiments were performed with particulate beta-glucan derived from S. cerevisiae. Data demonstrated that both, i.p administration of particulate beta-glucan (20 or 100 µg/animal) and in vitro stimulation of splenic cells (20 or 100 µg/ml of culture) decreased lymphoproliferation and IFN-gamma production induced by concanavalin A. These results suggest that beta-glucan can trigger a down-modulatory effect regulating a deleterious immune system hyperactivity in the presence of a strong stimulus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inter-individual differences in gene expression are likely to account for an important fraction of phenotypic differences, including susceptibility to common disorders. Recent studies have shown extensive variation in gene expression levels in humans and other organisms, and that a fraction of this variation is under genetic control. We investigated the patterns of gene expression variation in a 25 Mb region of human chromosome 21, which has been associated with many Down syndrome (DS) phenotypes. Taqman real-time PCR was used to measure expression variation of 41 genes in lymphoblastoid cells of 40 unrelated individuals. For 25 genes found to be differentially expressed, additional analysis was performed in 10 CEPH families to determine heritabilities and map loci harboring regulatory variation. Seventy-six percent of the differentially expressed genes had significant heritabilities, and genomewide linkage analysis led to the identification of significant eQTLs for nine genes. Most eQTLs were in trans, with the best result (P=7.46 x 10(-8)) obtained for TMEM1 on chromosome 12q24.33. A cis-eQTL identified for CCT8 was validated by performing an association study in 60 individuals from the HapMap project. SNP rs965951 located within CCT8 was found to be significantly associated with its expression levels (P=2.5 x 10(-5)) confirming cis-regulatory variation. The results of our study provide a representative view of expression variation of chromosome 21 genes, identify loci involved in their regulation and suggest that genes, for which expression differences are significantly larger than 1.5-fold in control samples, are unlikely to be involved in DS-phenotypes present in all affected individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

c-Jun N-terminal kinases (SAPK/JNKs) are activated by inflammatory cytokines, and JNK signaling is involved in insulin resistance and beta-cell secretory function and survival. Chronic high glucose concentrations and leptin induce interleukin-1beta (IL-1beta) secretion from pancreatic islets, an event that is possibly causal in promoting beta-cell dysfunction and death. The present study provides evidence that chronically elevated concentrations of leptin and glucose induce beta-cell apoptosis through activation of the JNK pathway in human islets and in insulinoma (INS 832/13) cells. JNK inhibition by the dominant inhibitor JNK-binding domain of IB1/JIP-1 (JNKi) reduced JNK activity and apoptosis induced by leptin and glucose. Exposure of human islets to leptin and high glucose concentrations leads to a decrease of glucose-induced insulin secretion, which was partly restored by JNKi. We detected an interplay between the JNK cascade and the caspase 1/IL-1beta-converting enzyme in human islets. The caspase 1 gene, which contains a potential activating protein-1 binding site, was up-regulated in pancreatic sections and in isolated islets from type 2 diabetic patients. Similarly, cultured human islets exposed to high glucose- and leptin-induced caspase 1 and JNK inhibition prevented this up-regulation. Therefore, JNK inhibition may protect beta-cells from the deleterious effects of high glucose and leptin in diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis whose interaction with the host may lead to a cell-mediated protective immune response. The presence of interferon-g (IFN-gamma) is related to this response. With the purpose of understanding the immunological mechanisms involved in this protection, the lymphoproliferative response, IFN-g and other cytokines like interleukin (IL-5, IL-10), and tumor necrosis factor alpha (TNF-a) were evaluated before and after the use of anti-TB drugs on 30 patients with active TB disease, 24 healthy household contacts of active TB patients, with positive purified protein derivative (PPD) skin tests (induration > 10 mm), and 34 asymptomatic individuals with negative PPD skin test results (induration < 5 mm). The positive lymphoproliferative response among peripheral blood mononuclear cells of patients showed high levels of IFN-g, TNF-a, and IL-10. No significant levels of IL-5 were detected. After treatment with rifampicina, isoniazida, and pirazinamida, only the levels of IFN-g increased significantly (p < 0.01). These results highlight the need for further evaluation of IFN-g production as a healing prognostic of patients treated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron microscopic analysis of heteroduplexes between the most distantly related Xenopus vitellogenin genes (A genes X B genes) has revealed the distribution of homologous regions that have been preferentially conserved after the duplication events that gave rise to the multigene family in Xenopus laevis. DNA sequence analysis was limited to the region downstream of the transcription initiation site of the Xenopus genes A1, B1 and B2 and a comparison with the Xenopus A2 and the major chicken vitellogenin gene is presented. Within the coding regions of the first three exons, nucleotide substitutions resulting in amino acid changes accumulate at a rate similar to that observed in globin genes. This suggests that the duplication event which led to the formation of the A and B ancestral genes in Xenopus laevis occurred about 150 million years ago. Homologous exons of the A1-A2 and B1-B2 gene pairs, which formed about 30 million years ago, show a quite similar sequence divergence. In contrast, A1-A2 homologous introns seem to have evolved much faster than their B1-B2 counterparts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La douleur neuropathique est définie comme une douleur causée par une lésion du système nerveux somato-sensoriel. Elle se caractérise par des douleurs exagérées, spontanées, ou déclenchées par des stimuli normalement non douloureux (allodynie) ou douloureux (hyperalgésie). Bien qu'elle concerne 7% de la population, ses mécanismes biologiques ne sont pas encore élucidés. L'étude des variations d'expressions géniques dans les tissus-clés des voies sensorielles (notamment le ganglion spinal et la corne dorsale de la moelle épinière) à différents moments après une lésion nerveuse périphérique permettrait de mettre en évidence de nouvelles cibles thérapeutiques. Elles se détectent de manière sensible par reverse transcription quantitative real-time polymerase chain reaction (RT- qPCR). Pour garantir des résultats fiables, des guidelines ont récemment recommandé la validation des gènes de référence utilisés pour la normalisation des données ("Minimum information for publication of quantitative real-time PCR experiments", Bustin et al 2009). Après recherche dans la littérature des gènes de référence fréquemment utilisés dans notre modèle de douleur neuropathique périphérique SNI (spared nerve injury) et dans le tissu nerveux en général, nous avons établi une liste de potentiels bons candidats: Actin beta (Actb), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal proteins 18S (18S), L13a (RPL13a) et L29 (RPL29), hypoxanthine phosphoribosyltransferase 1 (HPRT1) et hydroxymethyl-bilane synthase (HMBS). Nous avons évalué la stabilité d'expression de ces gènes dans le ganglion spinal et dans la corne dorsale à différents moments après la lésion nerveuse (SNI) en calculant des coefficients de variation et utilisant l'algorithme geNorm qui compare les niveaux d'expression entre les différents candidats et détermine la paire de gènes restante la plus stable. Il a aussi été possible de classer les gènes selon leur stabilité et d'identifier le nombre de gènes nécessaires pour une normalisation la plus précise. Les gènes les plus cités comme référence dans le modèle SNI ont été GAPDH, HMBS, Actb, HPRT1 et 18S. Seuls HPRT1 and 18S ont été précédemment validés dans des arrays de RT-qPCR. Dans notre étude, tous les gènes testés dans le ganglion spinal et dans la corne dorsale satisfont au critère de stabilité exprimé par une M-value inférieure à 1. Par contre avec un coefficient de variation (CV) supérieur à 50% dans le ganglion spinal, 18S ne peut être retenu. La paire de gènes la plus stable dans le ganglion spinal est HPRT1 et Actb et dans la corne dorsale il s'agit de RPL29 et RPL13a. L'utilisation de 2 gènes de référence stables suffit pour une normalisation fiable. Nous avons donc classé et validé Actb, RPL29, RPL13a, HMBS, GAPDH, HPRT1 et 18S comme gènes de référence utilisables dans la corne dorsale pour le modèle SNI chez le rat. Dans le ganglion spinal 18S n'a pas rempli nos critères. Nous avons aussi déterminé que la combinaison de deux gènes de référence stables suffit pour une normalisation précise. Les variations d'expression génique de potentiels gènes d'intérêts dans des conditions expérimentales identiques (SNI, tissu et timepoints post SNI) vont pouvoir se mesurer sur la base d'une normalisation fiable. Non seulement il sera possible d'identifier des régulations potentiellement importantes dans la genèse de la douleur neuropathique mais aussi d'observer les différents phénotypes évoluant au cours du temps après lésion nerveuse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acinetobacter baumannii is a strictly aerobic bacterium which causes severe infections, however its pathogenic characteristics are not well defined. Thirteen A. baumannii strains isolated from urine of hospitalized and nonhospitalized patients with different ages were investigated for the presence of virulence factors. The isolates belonged to biotypes 2, 6, and 9 and were sensitive to imipenem. The majority of them showed resistance to amikacin, ceftazidime, ceftriaxone, ciprofloxacin, gentamicin, norfloxacin, and trimethoprim-sulfamethoxazole. None of A. baumannii strains presented genes codifying for 17 different virulence factors previously described in uropathogenic Escherichia coli, when tested by polymerase chain reaction (PCR). Nine isolates agglutinated human group AB erythrocytes, in presence of mannose, but none of them agglutinated group O erythrocytes. Adherence to polystyrene was observed in 7 isolates, and this result did not correlate with that obtained in hemagglutination assay. All the isolates were able to grow in iron-limiting conditions, showing that A. baumannii produces some type of siderophore. However, the genes iutA and fyuA, from iron uptake system of E. coli and Yersinia sp., respectively, were not present in the isolates, suggesting the presence of a different type of siderophore. The fimbriae of A. baumannii strains that mediates the adherence are possibly mannose-resistant, eventhough the mechanism of adherence to human epithelial cells still remains to be elucidated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP), we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset), -6, -12, and -18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and -6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven.