978 resultados para IRRADIATION
Resumo:
A study of the gamma-radiolysis of the commercial polymers U-polymer, UP (Unitake) and polycarbonate, PC, (Aldrich) has been undertaken using ESR spectroscopy. The G-value of radical formation at 77 K has been found to be 0.31 +/- 0.01 for UP and 0.5 +/- 0.02 for PC. By using thermal annealing and spectral subtraction, the paramagnetic species formed on irradiation has been assigned. The effect of radiation on the chemical structure of UP and PC has been investigated at ambient temperature and at 423 K. The NMR results show that a new phenol type chain end is formed in the polymers on exposure to gamma-radiation. The G-value of formation of the new phenol ends was estimated to be 0.7 for PC (423 K) and 0.4 for UP (300 K). (C) 1998 John Wiley & Sons, Ltd.
Resumo:
Study Design, The study group consisted of 53 patients who underwent 75 operations for spine metastases. Patient and tumor demographic factors, preoperative nutritional status, and perioperative adjunctive therapy were retrospectively reviewed. Objective, To determine the risk factors for wound breakdown and infection in patients undergoing surgery for spinal metastases. Summary of Background Data. Spinal Fusion using spine implants may be associated with an infection rate of 5% or more. Surgery for spine metastases is associated with an infection rate of more than 10%. Factors other than the type of surgery performed may account for the greater infection rate. Methods. Data were obtained by reviewing patient records. Age, sex, and neurologic status of the patient; tumor type and site; and surgical details were noted. Adjunctive treatment with corticosteroids and radiotherapy was recorded, Nutritional status was evaluated by determining serum protein and serum albumin concentrations and by total lymphocyte count. Results. Wound breakdown and Infection occurred in 75 of 75 wounds. No patient or tumor demographic factors other than intraoperative blood loss (P < 0.1) were statistically associated with infection; The correlation between preoperative protein deficiency (P < 0.01) or perioperative corticosteroid administration (P < 0.10) and wound infection was significant. There was no statistical correlation between lymphocyte count or perioperative radiotherapy and wound infection. Conclusions, The results indicate that preoperative protein depletion and perioperative administration of corticosteroids are risk factors for wound infection in patients undergoing surgery for spine metastases, Perioperative correction of nutritional depletion and cessation of steroid therapy may reduce wound complications.
Resumo:
Bulk density of undisturbed soil samples can be measured using computed tomography (CT) techniques with a spatial resolution of about 1 mm. However, this technique may not be readily accessible. On the other hand, x-ray radiographs have only been considered as qualitative images to describe morphological features. A calibration procedure was set up to generate two-dimensional, high-resolution bulk density images from x-ray radiographs made with a conventional x-ray diffraction apparatus. Test bricks were made to assess the accuracy of the method. Slices of impregnated soil samples were made using hardsetting seedbeds that had been gamma scanned at 5-mm depth increments in a previous study. The calibration procedure involved three stages: (i) calibration of the image grey levels in terms of glass thickness using a staircase made from glass cover slips, (ii) measurement of ratio between the soil and resin mass attenuation coefficients and the glass mass attenuation coefficient, using compacted bricks of known thickness and bulk density, and (iii) image correction accounting for the heterogeneity of the irradiation field. The procedure was simple, rapid, and the equipment was easily accessible. The accuracy of the bulk density determination was good (mean relative error 0.015), The bulk density images showed a good spatial resolution, so that many structural details could be observed. The depth functions were consistent with both the global shrinkage and the gamma probe data previously obtained. The suggested method would be easily applied to the new fuzzy set approach of soil structure, which requires generation of bulk density images. Also, it would be an invaluable tool for studies requiring high-resolution bulk density measurement, such as studies on soil surface crusts.
Resumo:
The linearity of daily linear harvest index (HI) increase can provide a simple means to predict grain growth and yield in field crops. However, the stability of the rate of increase across genotypes and environments is uncertain. Data from three field experiments were collated to investigate the phase of linear HI increase of sunflower (Helianthus annuus L,) across environments by changing genotypes, sowing time, N level, and solar irradiation level. Linear increase in HI was similar among different genotypes, N levels, and radiation treatments (mean 0.0125 d(-1)). but significant differences occurred between sowings, The linear increase in HI was not stable at very low temperatures (down to 9 degrees C) during grain filling, due to possible limitations to biomass accumulation and translocation (mean 0.0091 d(-1)). Using the linear increase in HI to predict grain yield requires predictions of the duration from anthesis to the onset of linear HI increase (lag phase) and the cessation of linear RT increase. These studies showed that the lag phase differed, and the linear HI increase ceased when 91% of the anthesis to physiological maturity period had been completed.
Resumo:
The tetrachlorocuprate(II) ion can crystallize in two different structures with the piperazinium dication (pipzH(2)). Both structures contain discrete CuCl42- species. A yellow compound (pipzH(2))[CuCl4]. 2H(2)O (1) is monoclinic (C2/c, Z = 4, a = 10.538(3) Angstrom, b = 7.4312(5) Angstrom, c = 17.281(4) Angstrom, beta = 111.900(10)degrees) and contains the CuCl42- ion as a distorted tetrahedron. A green compound (pipzH(2))(2)[CuCl4]. Cl-2. 3H(2)O (2) is triclinic (P (1) over bar, Z = 2, a = 9.264(3) Angstrom, b = 10.447(2) Angstrom, c = 11.366(2) Angstrom, alpha = 68.38 degrees, beta = 82.86(2)degrees, gamma = 83.05(2)degrees) and contains the CuCl42- ion with a square planar geometry. This latter compound shows thermo/photochromism, changing from green to yellow upon heating or laser irradiation.
Resumo:
The effect of irradiation temperature on the polymer properties was investigated for the fluoroelastomer poly(tetrafluoroethylene-co-perfluoromethylvinyl ether) (TFE/PMVE). TFE/PMVE samples were gamma-irradiated to 150 kGy at temperatures ranging from 77 K to 373 K. Analysis of the sol/gel behaviour, tensile properties, and glass transition temperatures indicated that crosslinking commenced in the temperature range 195 to 263 K, for a dose of 150 kGy. The latter temperature was 13 K below the glass transition temperature. Crosslinking remained relatively constant to higher temperatures. Chain scission reactions were found to occur well below the glass transition temperature and increased at higher temperatures. The optimum temperature for the radiation crosslinking of TFE/PMVE, for the temperatures investigated, was 263 K. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The gamma-radiolysis of poly(tetrafluoroethylene-co-perfluoromethyl vinyl ether) (TFE/PMVE) was investigated using chemical and mechanical analyses. The polymer was found to form an insoluble network with a dose of gelation of 15.8 kGy. Tensile and glass transition temperature measurements indicated the predominance of crosslinking, with optimal elastomeric properties reached in the dose range of 120 to 200 kGy. Photoacoustic FTIR spectroscopy CPAS) showed the formation of new carboxylic acid end groups on irradiation. These new end groups were shown to decrease the thermal oxidative stability of the crosslinked network as determined by thermal gravimetric analysis. Electron spin resonance (ESR) studies of the polymer at 77 K indicated the presence of radical precursors. A G-value of 1.1 was determined for radical production at 77 K. Comparison of radical concentrations for a copolymer with a different mole ratio of PMVE, indicated that the PMVE units contribute to scission reactions. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
lBACKGROUND. Management of patients with ductal carcinoma in situ (DCIS) is a dilemma, as mastectomy provides nearly a 100% cure rate but at the expense of physical and psychologic morbidity. It would be helpful if we could predict which patients with DCIS are at sufficiently high risk of local recurrence after conservative surgery (CS) alone to warrant postoperative radiotherapy (RT) and which patients are at sufficient risk of local recurrence after CS + RT to warrant mastectomy. The authors reviewed the published studies and identified the factors that may be predictive of local recurrence after management by mastectomy, CS alone, or CS + RT. METHODS. The authors examined patient, tumor, and treatment factors as potential predictors for local recurrence and estimated the risks of recurrence based on a review of published studies. They examined the effects of patient factors (age at diagnosis and family history), tumor factors (sub-type of DCIS, grade, tumor size, necrosis, and margins), and treatment (mastectomy, CS alone, and CS + RT). The 95% confidence intervals (CI) of the recurrence rates for each of the studies were calculated for subtype, grade, and necrosis, using the exact binomial; the summary recurrence rate and 95% CI for each treatment category were calculated by quantitative meta-analysis using the fixed and random effects models applied to proportions. RESULTS, Meta-analysis yielded a summary recurrence rate of 22.5% (95% CI = 16.9-28.2) for studies employing CS alone, 8.9% (95% CI = 6.8-11.0) for CS + RT, and 1.4% (95% CI = 0.7-2.1) for studies involving mastectomy alone. These summary figures indicate a clear and statistically significant separation, and therefore outcome, between the recurrence rates of each treatment category, despite the likelihood that the patients who underwent CS alone were likely to have had smaller, possibly low grade lesions with clear margins. The patients with risk factors of presence of necrosis, high grade cytologic features, or comedo subtype were found to derive the greatest improvement in local control with the addition of RT to CS. Local recurrence among patients treated by CS alone is approximately 20%, and one-half of the recurrences are invasive cancers. For most patients, RT reduces the risk of recurrence after CS alone by at least 50%. The differences in local recurrence between CS alone and CS + RT are most apparent for those patients with high grade tumors or DCIS with necrosis, or of the comedo subtype, or DCIS with close or positive surgical margins. CONCLUSIONS, The authors recommend that radiation be added to CS if patients with DCIS who also have the risk factors for local recurrence choose breast conservation over mastectomy. The patients who may be suitable for CS alone outside of a clinical trial may be those who have low grade lesions with little or no necrosis, and with clear surgical margins. Use of the summary statistics when discussing outcomes with patients may help the patient make treatment decisions. Cancer 1999;85:616-28. (C) 1999 American Cancer Society.
Resumo:
Incorporation of 1 wt % of triallyl isocyanurate (TAIC) significantly enhanced the radiation crosslinking of the perfluoroelastomer, poly(tetrafluoroethylene-co-perfluoromethylvinyl ether) (TFE/PMVE). The dose for gelation was lowered by 70% with the presence of TAIC. The additive also improved the tensile properties of TFE/ PMVE both before and after crosslinking by irradiation. Higher radical yields were obtained with the presence of TAIC at 77 K, indicating the crosslinking promoter was acting as a radical trap. ESR studies showed that radiolysis of TAIC and subsequent photobleaching cleaved an allyl branch from the ring structure. Upon thermal annealing, an allyl radical on the TAIC molecule was observed. (C) 1999 John Wiley & Sons, Inc.
Resumo:
The radiolysis of nitrile rubbers with different acrylonitrile/butadiene composition and the homopolymers, poly(butadiene) (PBD) and poly(acrylonitrile) (PAN) has been investigated and compared with the photolysis of the same polymers. A significantly different mechanism of degradation was found for the two types of radiation. The results obtained by ESR, FTIR and measurements of soluble fractions of irradiated samples, indicated that the acrylonitrile units of the nitrile rubbers are more sensitive units to gamma-radiation, with the effects of irradiation increasing with the acrylonitrile content. The reactions observed were consumption of double bonds, crosslinking, and cyclization with the formation of conjugated double bonds. No chain-scission reactions were detected. In contrast to gamma-irradiation, the effects of photolysis were centred at the butadiene units, and increases in the acrylonitrile content resulted in a proportional decrease in the sensitivity of the copolymers. Crosslinking and chain scission were identified as the main effects of photolysis of NBR rubbers. (C) 1999 Society of Chemical Industry.
Resumo:
Methods of promoting the radiation-induced cross linking of poly(tetrafluoro-ethylene-co-perfluoromethyl vinyl ether) (TFE/PMVE) have been investigated. Greater control of the crosslinking and chain-scission reactions was achieved by varying the radiolysis temperature. This was attributed to temperature affecting the mobilities of reactive species such as polymeric free radicals. These reactive species are precursors to radiation-induced cross links and chain-ends. Analysis of the sol/gel behaviour, tensile properties and FTIR indicated that the optimum temperature for the radiation crosslinking of TFE/PMVE, at a dose of 150 kGy, was 263 K. This temperature was 10 K below the glass transition temperature. Incorporation of 1 wt% triallyl isocyanurate (TAIC) greatly amplified the radiation crosslinking of TFE/PMVE, The dose for gelation was decreased by 70%, and the additive imparted superior mechanical properties compared to the neat irradiated TFE/PMVE. Electron spin resonance (ESR) measurements showed higher radical yields at 77 K with the 1 wt% TAIC, indicating that the crosslinking promoter was acting as a radical trap. (C) 1999 Society of Chemical Industry.
Resumo:
Polymer hydrogels based upon methacrylates are used extensively in the pharmaceutical industry, particularly as controlled release drug delivery systems. These materials are generally prepared by chemically initiated polymerization, but this can lead to the presence of unwanted initiator fragments in the polymer matrix. In the present work, initiation of polymerization by gamma-irradiation of hydroxyethyl methacrylate, with and without added crosslinkers, has been investigated, and the diffusion coefficients for water in the resulting polymers have been measured through mass uptake by the polymers. The diffusion of water in poly(hydroxyethyl methacrylate) at 310 K was found to be Fickian, with a diffusion coefficient of 1.96 +/- 0.1 x 10(11) m(2) s(-1) and an equilibrium water content of 58%, NMR imaging analyses confirmed the adherance to a Fickian model of the diffusion of water into polymer cylinders. The incorporation of small amounts (0.2-0.5 wt%) of added ethyleneglycol-dimethacrylate-based crosslinkers was found to have only a small effect on the diffusion coefficient and the equilibrium water content for the copolymers. (C) 1999 Society of Chemical Industry.
Resumo:
The thermal and gamma-irradiation induced curing of two phenylethynyl terminated composite resin systems, DFB/BPF and PETI5A, was investigated. Thermal curing of these matrix resin samples was performed at a temperature of 360 degrees C, gamma irradiation of the samples was conducted at 300 degrees C at a dose rate of 2.2 kGy h(-1). The reaction and subsequent loss of ethynyl groups in the resins for both cure methods was demonstrated by observing the decrease of the 2215 cm(-1) peak in the Raman spectra of the resins. Fully cured resin samples were found to have glass transition temperatures of 244-246 degrees C and 278-280 degrees C for DFB/BPF and PETI5A respectively. Similar relationships between T-g and fractional conversion were observed in both resins. The apparent polymerization rate, R-p, for thermal cure at 360 degrees C, was found to be 4.79 x 10(-2)% s(-1) in PETI5A and 3.22 x 10(-2)% s(-1) in DFB/BPF. Catastrophic degradation under nitrogen was observed to commence near 450 degrees C and 530 degrees C, with 5% weight losses occurring at 455 degrees C and 540 degrees C for DFB/BPF and PETI5A respectively. Gamma radiation induced cure at 300 degrees C was shown to be feasible, with full cure being reached with doses of 40 kGy for DFB/BPF and 100 kGy for PETI5A.
Resumo:
A variety of adhesive support-films were tested for their ability to adhere various biological specimens for transmission electron microscopy. Support films primed with 3-amino-propyl triethoxy silane (APTES), poly-L-lysine, carbon and ultraviolet-B (UV-B)-irradiated carbon were tested for their ability to adhere a variety of biological specimens including axenic cultures of Bacillus subtilis and Escherichia coli and wild-type magnetotactic bacteria. The effects of UV-B irradiation on the support film in the presence of air and electrostatic charge on primer deposition were tested and the stability of adhered specimens on various surfaces was also compared. APTES-primed UV-B-irradiated Pioloform(TM) was consistently the best adhesive, especially for large cells, and when adhered specimens were UV-B irradiated they became remarkably stable under an electron beam. This assisted the acquisition of in situ phase-contrast lattice images from a variety of biominerals in magnetotactic bacteria, in particular metastable greigite magnetosomes. Washing tests indicated that specimens adhering to APTES-primed UV-B-irradiated Pioloform(TM) were covalently coupled. The electron beam stability was hypothesised to be the result of mechanical strengthening of the specimen and support film and the reduced electrical resistance in the specimen and support film due to their polymerization and covalent coupling.
Resumo:
A major challenge associated with using large chemical libraries synthesized on microscopic solid support beads is the rapid discrimination of individual compounds in these libraries. This challenge can be overcome by encoding the beads with 1 mum silica colloidal particles (reporters) that contain specific and identifiable combinations of fluorescent byes. The colored bar code generated on support beads during combinatorial library synthesis can be easily, rapidly, and inexpensively decoded through the use of fluorescence microscopy. All reporters are precoated with polyelectrolytes [poly(acrylic acid), PAA, poly(sodium 4-styrenesulfonate PSSS, polyethylenimine, PEI, and/or poly(diallyldimethylammonium chloride), PDADMAC] with the aim of enhancing surface charge, promoting electrostatic attraction to the bead, and facilitating polymer bridging between the bead and reporter for permanent adhesion. As shown in this article, reporters coated with polyelectrolytes clearly outperform uncoated reporters with regard to quantity of attached reporters per bead (54 +/- 23 in 2500 mum(2) area for PEI/PAA coated and 11 +/- 6 for uncoated reporters) and minimization of cross-contamination (1 red reporter in 2500 mum(2) area of green-labeled bead for PEI/PAA coated and 26 +/- 15 red reporters on green-labeled beads for uncoated reporters after 10 days). Examination of various polyelectrolyte systems shows that the magnitude of the xi -potential of polyelectrolyte-coated reporters (-64 mV for PDADMAC/PSSS and -42 mV for PEI/PAA-coated reporters) has no correlation with the number of reporters that adhere to the solid support beads (21 +/- 16 in 2500 mum(2) area for PDADMAC/PSSS and 54 +/- 23 for PEI/PAA-coated reporters). The contribution of polymer bridging to the adhesion has a far greater influence than electrostatic attraction and is demonstrated by modification of the polyelectrolyte multilayers using gamma irradiation of precoated reporters either in aqueous solution or in polyelectrolyte solution.