993 resultados para IR imaging
Resumo:
PURPOSE: A new magnetic resonance imaging approach for detection of myocardial late enhancement during free-breathing was developed. METHODS AND RESULTS: For suppression of respiratory motion artifacts, a prospective navigator technology including real-time motion correction and a local navigator restore was implemented. Subject specific inversion times were defined from images with incrementally increased inversion times acquired during a single dynamic scout navigator-gated and real-time motion corrected free-breathing scan. Subsequently, MR-imaging of myocardial late enhancement was performed with navigator-gated and real-time motion corrected adjacent short axis and long axis (two, three and four chamber) views. This alternative approach was investigated in 7 patients with history of myocardial infarction 12 min after i. v. administration of 0.2 mmol/kg body weight gadolinium-DTPA. CONCLUSION: With the presented navigator-gated and real-time motion corrected sequence for MR-imaging of myocardial late enhancement data can be completely acquired during free-breathing. Time constraints of a breath-hold technique are abolished and optimized patient specific inversion time is ensured.
Resumo:
PURPOSE: To examine the impact of spatial resolution and respiratory motion on the ability to accurately measure atherosclerotic plaque burden and to visually identify atherosclerotic plaque composition. MATERIALS AND METHODS: Numerical simulations of the Bloch equations and vessel wall phantom studies were performed for different spatial resolutions by incrementally increasing the field of view. In addition, respiratory motion was simulated based on a measured physiologic breathing pattern. RESULTS: While a spatial resolution of > or = 6 pixels across the wall does not result in significant errors, a resolution of < or = 4 pixels across the wall leads to an overestimation of > 20%. Using a double-inversion T2-weighted turbo spin echo sequence, a resolution of 1 pixel across equally thick tissue layers (fibrous cap, lipid, smooth muscle) and a respiratory motion correction precision (gating window) of three times the thickness of the tissue layer allow for characterization of the different coronary wall components. CONCLUSIONS: We found that measurements in low-resolution black blood images tend to overestimate vessel wall area and underestimate lumen area.
Resumo:
BACKGROUND: Stem cell labeling with iron oxide (ferumoxide) particles allows labeled cells to be detected by magnetic resonance imaging (MRI) and is commonly used to track stem cell engraftment. However, the validity of MRI for distinguishing surviving ferumoxide-labeled cells from other sources of MRI signal, for example, macrophages containing ferumoxides released from nonsurviving cells, has not been thoroughly investigated. We sought to determine the relationship between the persistence of iron-dependent MRI signals and cell survival 3 weeks after injection of syngeneic or xenogeneic ferumoxides-labeled stem cells (cardiac-derived stem cells) in rats. METHODS AND RESULTS: We studied nonimmunoprivileged human and rat cardiac-derived stem cells and human mesenchymal stem cells doubly labeled with ferumoxides and beta-galactosidase and injected intramyocardially into immunocompetent Wistar-Kyoto rats. Animals were imaged at 2 days and 3 weeks after stem cell injection in a clinical 3-T MRI scanner. At 2 days, injection sites of xenogeneic and syngeneic cells (cardiac-derived stem cells and mesenchymal stem cells) were identified by MRI as large intramyocardial signal voids that persisted at 3 weeks (50% to 90% of initial signal). Histology (at 3 weeks) revealed the presence of iron-containing macrophages at the injection site, identified by CD68 staining, but very few or no beta-galactosidase-positive stem cells in the animals transplanted with syngeneic or xenogeneic cells, respectively. CONCLUSIONS: The persistence of significant iron-dependent MRI signal derived from ferumoxide-containing macrophages despite few or no viable stem cells 3 weeks after transplantation indicates that MRI of ferumoxide-labeled cells does not reliably report long-term stem cell engraftment in the heart.
Resumo:
PURPOSE: At high magnetic field strengths (B0 ≥ 3 T), the shorter radiofrequency wavelength produces an inhomogeneous distribution of the transmit magnetic field. This can lead to variable contrast across the brain which is particularly pronounced in T2 -weighted imaging that requires multiple radiofrequency pulses. To obtain T2 -weighted images with uniform contrast throughout the whole brain at 7 T, short (2-3 ms) 3D tailored radiofrequency pulses (kT -points) were integrated into a 3D variable flip angle turbo spin echo sequence. METHODS: The excitation and refocusing "hard" pulses of a variable flip angle turbo spin echo sequence were replaced with kT -point pulses. Spatially resolved extended phase graph simulations and in vivo acquisitions at 7 T, utilizing both single channel and parallel-transmit systems, were used to test different kT -point configurations. RESULTS: Simulations indicated that an extended optimized k-space trajectory ensured a more homogeneous signal throughout images. In vivo experiments showed that high quality T2 -weighted brain images with uniform signal and contrast were obtained at 7 T by using the proposed methodology. CONCLUSION: This work demonstrates that T2 -weighted images devoid of artifacts resulting from B1 (+) inhomogeneity can be obtained at high field through the optimization of extended kT -point pulses. Magn Reson Med 71:1478-1488, 2014. © 2013 Wiley Periodicals, Inc.
Resumo:
PURPOSE: To evaluate gadocoletic acid (B-22956), a gadolinium-based paramagnetic blood pool agent, for contrast-enhanced coronary magnetic resonance angiography (MRA) in a Phase I clinical trial, and to compare the findings with those obtained using a standard noncontrast T2 preparation sequence. MATERIALS AND METHODS: The left coronary system was imaged in 12 healthy volunteers before B-22956 application and 5 (N = 11) and 45 (N = 7) minutes after application of 0.075 mmol/kg of body weight (BW) of B-22956. Additionally, imaging of the right coronary system was performed 23 minutes after B-22956 application (N = 6). A three-dimensional gradient echo sequence with T2 preparation (precontrast) or inversion recovery (IR) pulse (postcontrast) with real-time navigator correction was used. Assessment of the left and right coronary systems was performed qualitatively (a 4-point visual score for image quality) and quantitatively in terms of signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), vessel sharpness, visible vessel length, maximal luminal diameter, and the number of visible side branches. RESULTS: Significant (P < 0.01) increases in SNR (+42%) and CNR (+86%) were noted five minutes after B-22956 application, compared to precontrast T2 preparation values. A significant increase in CNR (+40%, P < 0.05) was also noted 45 minutes postcontrast. Vessels (left anterior descending artery (LAD), left coronary circumflex (LCx), and right coronary artery (RCA)) were also significantly (P < 0.05) sharper on postcontrast images. Significant increases in vessel length were noted for the LAD (P < 0.05) and LCx and RCA (both P < 0.01), while significantly more side branches were noted for the LAD and RCA (both P < 0.05) when compared to precontrast T2 preparation values. CONCLUSION: The use of the intravascular contrast agent B-22956 substantially improves both objective and subjective parameters of image quality on high-resolution three-dimensional coronary MRA. The increase in SNR, CNR, and vessel sharpness minimizes current limitations of coronary artery visualization with high-resolution coronary MRA.
Resumo:
We present a full field laser Doppler imaging instrument, which enables real-time in vivo assessment of blood flow in dermal tissue and skin. This instrument monitors the blood perfusion in an area of about 50 cm(2) with 480 × 480 pixels per frame at a rate of 12-14 frames per second. Smaller frames can be monitored at much higher frame rates. We recorded the microcirculation in healthy skin before, during and after arterial occlusion. In initial clinical case studies, we imaged the microcirculation in burned skin and monitored the recovery of blood flow in a skin flap during reconstructive surgery indicating the high potential of LDI for clinical applications. Small animal imaging in mouse ears clearly revealed the network of blood vessels and the corresponding blood perfusion.
Resumo:
Impressive developments in X-ray imaging are associated with X-ray phase contrast computed tomography based on grating interferometry, a technique that provides increased contrast compared with conventional absorption-based imaging. A new "single-step" method capable of separating phase information from other contributions has been recently proposed. This approach not only simplifies data-acquisition procedures, but, compared with the existing phase step approach, significantly reduces the dose delivered to a sample. However, the image reconstruction procedure is more demanding than for traditional methods and new algorithms have to be developed to take advantage of the "single-step" method. In the work discussed in this paper, a fast iterative image reconstruction method named OSEM (ordered subsets expectation maximization) was applied to experimental data to evaluate its performance and range of applicability. The OSEM algorithm with different subsets was also characterized by comparison of reconstruction image quality and convergence speed. Computer simulations and experimental results confirm the reliability of this new algorithm for phase-contrast computed tomography applications. Compared with the traditional filtered back projection algorithm, in particular in the presence of a noisy acquisition, it furnishes better images at a higher spatial resolution and with lower noise. We emphasize that the method is highly compatible with future X-ray phase contrast imaging clinical applications.
Resumo:
Over the last two decades, Atomic Force Microscopy (AFM) has emerged as the tool of choice to image living organisms in a near-physiological environment. Whereas fluorescence microscopy techniques allow labeling and tracking of components inside cells and the observation of dynamic processes, AFM is mainly a surface technique that can be operated on a wide range of substrates including biological samples. AFM enables extraction of topographical, mechanical and chemical information from these samples.
Resumo:
Current therapeutic strategies against glioblastoma (GBM) have failed to prevent disease progression and recurrence effectively. The part played by molecular imaging (MI) in the development of novel therapies has gained increasing traction in recent years. For the first time, using expertise from an integrated multidisciplinary group of authors, herein we present a comprehensive evaluation of state-of-the-art GBM imaging and explore how advances facilitate the emergence of new treatment options. We propose a novel next-generation treatment paradigm based on the targeting of multiple hallmarks of cancer evolution that will heavily rely on MI.
Resumo:
The prognostic significance of magnetic resonance imaging (MRI) in the neonatal period was studied prospectively in 43 term infants with perinatal asphyxia. MRI was performed between 1 and 14 days after birth with a high field system (2.35 Tesla). Neurodevelopmental outcome was assessed by a standardized neurological examination and the Griffiths developmental test at a mean age of 18.9 months. The predictive value of the various MRI patterns was as follows: Severe diffuse brain injury (pattern AII+III; n = 7) and lesions of thalamus and basal ganglia (pattern C; n = 5) were strongly associated with poor outcome and greatly reduced head growth. Mild diffuse brain injury (pattern AI; n = 7), parasagittal lesions (B; n = 7), periventricular hyperintensity (D; n = 2), focal brain necrosis and hemorrhage (E; n = 3) and periventricular hypointense stripes (on T2-weighted images; F; n = 3) led in one third of the infants to minor neurological disturbances and mild developmental delay. Infants with normal MRI findings (G; n = 9) developed normally with the exception of one infant who was mildly delayed at 18 months. The results indicate that MRI examination during the first two weeks of life is of prognostic significance in term infants suffering from perinatal asphyxia. Severe hypoxic-ischemic brain lesions were associated highly significantly with poor neuro-developmental outcome, whereas infants with inconspicuous MRI developed normally.
Resumo:
Chemosensory receptor gene families encode divergent proteins capable of detecting a huge diversity of environmental stimuli that are constantly changing over evolutionary time as organisms adapt to distinct ecological niches. While olfaction is dedicated to the detection of volatile compounds, taste is key to assess food quality for nutritional value and presence of toxic substances. The sense of taste also provides initial signals to mediate endocrine regulation of appetite and food metabolism and plays a role in kin recognition. The fruit fly Drosophila melanogaster is a very good model for studying smell and taste because these senses are very important in insects and because a broad variety of genetic tools are available in Drosophila. Recently, a family of 66 chemosensory receptors, the Ionotropic Receptors (IRs) was described in fruit flies. IRs are distantly related to ionotropic glutamate receptors (iGluRs), but their evolutionary origin from these synaptic receptors is unclear. While 16 IRs are expressed in the olfactory system, nothing is known about the other members of this repertoire. In this thesis, I describe bioinformatic, expression and functional analyses of the IRs aimed at understanding how these receptors have evolved, and at characterising the role of the non-olfactory IRs. I show that these have emerged at the basis of the protostome lineage and probably have acquired their sensory function very early. Moreover, although several IRs are conserved across insects, there are rapid and dramatic changes in the size and divergence of IR repertoires across species. I then performed a comprehensive analysis of IR expression in the larva of Drosophila melanogaster, which is a good model to study taste and feeding mechanisms as it spends most of its time eating or foraging. I found that most of the divergent members of the IR repertoire are expressed in both peripheral and internal gustatory neurons, suggesting that these are involved in taste perception. Finally, through the establishment of a new neurophysiological assay in larvae, I identified for the first time subsets of IR neurons that preferentially detect sugars and amino acids, indicating that IRs might be involved in sensing these compounds. Together, my results indicate that IRs are an evolutionarily dynamic and functionally versatile family of receptors. In contrast to the olfactory IRs that are well-conserved, gustatory IRs are rapidly evolving species-specific receptors that are likely to be involved in detecting a wide variety of tastants. - La plupart des animaux possèdent de grandes familles de récepteurs chimiosensoriels dont la fonction est de détecter l'immense diversité de composés chimiques présents dans l'environnement. Ces récepteurs évoluent en même temps que les organismes s'adaptent à leur écosystème. Il existe deux manières de percevoir ces signaux chimiques : l'olfaction et le goût. Alors que le système olfactif perçoit les composés volatiles, le sens du goût permet d'évaluer, par contact, la qualité de la nourriture, de détecter des substances toxiques et de réguler l'appétit et le métabolisme. L'un des organismes modèles les plus pertinents pour étudier le sens du goût est le stade larvaire de la mouche du vinaigre Drosophila melanogaster. En effet, la principale fonction du stade larvaire est de trouver de la nourriture et de manger. De plus, il est possible d'utiliser tous les outils génétiques développés chez la drosophile. Récemment, une nouvelle famille de 66 récepteurs chimiosensoriels appelés Récepteurs Ionotropiques (IRs) a été découverte chez la drosophile. Bien que leur orogine soit peu claire, ces récepteurs sont similaires aux récepteurs ionotropiques glutamatergiques impliqués dans la transmission synaptique. 16 IRs sont exprimés dans le système olfactif de la mouche adulte, mais pour l'instant on ne connaît rien des autres membres de cette famille. Durant ma thèse, j'ai effectué des recherches sur l'évolution de ces récepteurs ainsi que sur l'expression et la fonction des IRs non olfactifs. Je démontre que les IRs sont apparus chez l'ancêtre commun des protostomiens et ont probablement acquis leur fonction sensorielle très rapidement. De plus, bien qu'un certain nombre d'IRs olfactifs soient conservés chez les insectes, d'importantes variations dans la taille et la divergence des répertoires d'IRs entre les espèces ont été constatées. J'ai également découvert qu'un grand nombre d'IRs non olfactifs sont exprimés dans différents organes gustatifs, ce qui leur confère probablement une fonction dans la perception des goûts. Finalement, pour la première fois, des neurones exprimant des IRs ont été identifiés pour leur fonction dans la perception de sucres et d'acides aminés chez la larve. Mes résultats présentent les IRs comme une famille très dynamique, aux fonctions très variées, qui joue un rôle tant dans l'odorat que dans le goût, et dont la fonction est restée importante tout au long de l'évolution. De plus, l'identification de neurones spécialisés dans la perception de certains composés permettra l'étude des circuits neuronaux impliqués dans le traitement de ces informations.
Resumo:
To evaluate the efficacy of endorectal Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spetroscopic Imaging (MRSI) combined with total prostate-specific antigen (tPSA) and free prostate-specific antigen (fPSA) in selecting candidates for biopsy. Subjects and Methods: 246 patients with elevated tPSA (median: 7.81 ng/ml) underwent endorectal MRI and MRSI before Transrectal Ultrasound (TRUS) biopsy (10 peripheral + 2 central cores); patients with positive biopsies were treated with radical intention; those with negative biopsies were followed up and underwent MRSI before each additional biopsy if tPSA rose persistently. Mean follow-up: 27.6 months. We compared MRI, MRSI, tPSA, and fPSA with histopathology by sextant and determined the association between the Gleason score and MRI and MRSI. We determined the most accurate combination to detect prostate cancer (PCa) using receiver operating curves; we estimated the odds ratios (OR) and calculated sensitivity, specificity, and positive and negative predictive values. Results: No difference in tPSA was found between patients with and without PCa (p = 0.551). In the peripheral zone, the risk of PCa increased with MRSI grade; patients with high-grade MRSI had the greatest risk of PCa over time (OR = 328.6); the model including MRI, MRSI, tPSA, and fPSA was more accurate (Area under Curve: AUC = 95.7%) than MRI alone (AUC = 85.1%) or fPSA alone (AUC = 78.1%), but not than MRSI alone (94.5%). In the transitional zone, the model was less accurate (AUC = 84.4%). The association (p = 0.005) between MRSI and Gleason score was significant in both zones. Conclusions: MRSI is useful in patients with elevated tPSA. High-grade MRSI lesions call for repeated biopsies. Men with negative MRSI may forgo further biopsies because a significantly high Gleason lesion is very unlikely
Resumo:
In this paper we use a Terahertz (THz) time-domain system to image and analyze the structure of an artwork attributed to the Spanish artist Goya painted in 1771. The THz images show features that cannot be seen with optical inspection and complement data obtained with X-ray imaging that provide evidence of its authenticity, which is validated by other independent studies. For instance, a feature with a strong resemblance with one of Goya"s known signatures is seen in the THz images. In particular, this paper demonstrates the potential of THz imaging as a complementary technique along with X-ray for the verification and authentication of artwork pieces through the detection of features that remain hidden to optical inspection.
Resumo:
The vascular properties of large vessels in the obese have not been adequately studied. We used cardiovascular magnetic resonance imaging to quantify the cross-sectional area and elastic properties of the ascending thoracic and abdominal aorta in 21 clinically healthy obese young adult men and 25 men who were age-matched lean controls. Obese subjects had greater maximal cross-sectional area of the ascending thoracic aorta (984 +/- 252 vs 786 +/- 109 mm(2), p <0.01) and of the abdominal aorta (415 +/- 71 vs 374 +/- 51 mm(2), p <0.05). When indexed for height the differences persisted, but when indexed for body surface area, a significant difference between groups was found only for the maximal abdominal aortic cross-sectional area. The obese subjects also had decreased abdominal aortic elasticity, characterized by 24% lower compliance (0.0017 +/- 0.0004 vs 0.0021 +/- 0.0005 mm(2)/kPa/mm, p <0.01), 22% higher stiffness index beta (6.0 +/- 1.5 vs 4.9 +/- 0.7, p <0.005), and 41% greater pressure-strain elastic modulus (72 +/- 25 vs 51 +/- 9, p <0.005). At the ascending thoracic aorta, only the pressure-strain elastic modulus was different between obese and lean subjects (85 +/- 42 vs 65 +/- 26 kPa, respectively; p <0.05), corresponding to a 31% difference-but arterial compliance and stiffness index were not significantly different between groups. In clinically healthy young adult obese men, obesity is associated with increased cross-sectional aortic area and decreased aortic elasticity.