978 resultados para ION-CYCLOTRON RESONANCE
Resumo:
We use temperature tuning to control signal propagation in simple one-dimensional arrays of masses connected by hard anharmonic springs and with no local potentials. In our numerical model a sustained signal is applied at one site of a chain immersed in a thermal environment and the signal-to-noise ratio is measured at each oscillator. We show that raising the temperature can lead to enhanced signal propagation along the chain, resulting in thermal resonance effects akin to the resonance observed in arrays of bistable systems.
Resumo:
The recently discovered epithelial sodium channel (ENaC)/degenerin (DEG) gene family encodes sodium channels involved in various cell functions in metazoans. Subfamilies found in invertebrates or mammals are functionally distinct. The degenerins in Caenorhabditis elegans participate in mechanotransduction in neuronal cells, FaNaC in snails is a ligand-gated channel activated by neuropeptides, and the Drosophila subfamily is expressed in gonads and neurons. In mammals, ENaC mediates Na+ transport in epithelia and is essential for sodium homeostasis. The ASIC genes encode proton-gated cation channels in both the central and peripheral nervous system that could be involved in pain transduction. This review summarizes the physiological roles of the different channels belonging to this family, their biophysical and pharmacological characteristics, and the emerging knowledge of their molecular structure. Although functionally different, the ENaC/DEG family members share functional domains that are involved in the control of channel activity and in the formation of the pore. The functional heterogeneity among the members of the ENaC/DEG channel family provides a unique opportunity to address the molecular basis of basic channel functions such as activation by ligands, mechanotransduction, ionic selectivity, or block by pharmacological ligands.
Resumo:
AIMS: The time course of atherosclerosis burden in distinct vascular territories remains poorly understood. We longitudinally evaluated the natural history of atherosclerotic progression in two different arterial territories using high spatial resolution magnetic resonance imaging (HR-MRI), a powerful, safe, and non-invasive tool. METHODS AND RESULTS: We prospectively studied a cohort of 30 patients (mean age 68.3, n = 9 females) with high Framingham general cardiovascular disease 10-year risk score (29.5%) and standard medical therapy with mild-to-moderate atherosclerosis intra-individually at the level of both carotid and femoral arteries. A total of 178 HR-MRI studies of carotid and femoral arteries performed at baseline and at 1- and 2-year follow-up were evaluated in consensus reading by two experienced readers for lumen area (LA), total vessel area (TVA), vessel wall area (VWA = TVA - LA), and normalized wall area index (NWI = VWA/TVA). At the carotid level, LA decreased (-3.19%/year, P = 0.018), VWA increased (+3.83%/year, P = 0.019), and TVA remained unchanged. At the femoral level, LA remained unchanged, VWA and TVA increased (+5.23%/year and +3.11%/year, both P < 0.01), and NWI increased for both carotid and femoral arteries (+2.28%/year, P = 0.01, and +1.8%/year, P = 0.033). CONCLUSION: The atherosclerotic burden increased significantly in both carotid and femoral arteries. However, carotid plaque progression was associated with negative remodelling, whereas the increase in femoral plaque burden was compensated by positive remodelling. This finding could be related to anatomic and flow differences and/or to the distinct degree of obstruction in the two arterial territories.
Resumo:
The known genetic mutation causing Huntington's disease (HD) makes this disease an important model to study links between gene and brain function. An autosomal dominant family history and the availability of a sensitive and specific genetic test allow pre-clinical diagnosis many years before the onset of any typical clinical signs. This review summarizes recent magnetic resonance imaging (MRI)-based findings in HD with a focus on the requirements if imaging is to be used in treatment trials. Despite its monogenetic cause, HD presents with a range of clinical manifestations, not explained by variation in the number of CAG repeats in the affected population. Neuroimaging studies have revealed a complex pattern of structural and functional changes affecting widespread cortical and subcortical regions far beyond the confines of the striatal degeneration that characterizes this disorder. Besides striatal dysfunction, functional imaging studies have reported a variable pattern of increased and decreased activation in cortical regions in both pre-clinical and clinically manifest HD-gene mutation carriers. Beyond regional brain activation changes, evidence from functional and diffusion-weighted MRI further suggests disrupted connectivity between corticocortical and corticostriatal areas. However, substantial inconsistencies with respect to structural and functional changes have been reported in a number of studies. Possible explanations include methodological factors and differences in study samples. There may also be biological explanations but these are poorly characterized and understood at present. Additional insights into this phenotypic variability derived from study of mouse models are presented to explore this phenomenon.
Resumo:
3D dose reconstruction is a verification of the delivered absorbed dose. Our aim was to describe and evaluate a 3D dose reconstruction method applied to phantoms in the context of narrow beams. A solid water phantom and a phantom containing a bone-equivalent material were irradiated on a 6 MV linac. The transmitted dose was measured by using one array of a 2D ion chamber detector. The dose reconstruction was obtained by an iterative algorithm. A phantom set-up error and organ interfraction motion were simulated to test the algorithm sensitivity. In all configurations convergence was obtained within three iterations. A local reconstructed dose agreement of at least 3% / 3mm with respect to the planned dose was obtained, except in a few points of the penumbra. The reconstructed primary fluences were consistent with the planned ones, which validates the whole reconstruction process. The results validate our method in a simple geometry and for narrow beams. The method is sensitive to a set-up error of a heterogeneous phantom and interfraction heterogeneous organ motion.
Resumo:
The oxidation of GaAs and AlxGa1−xAs targets by oxygen irradiation has been studied in detail. It was found that the oxidation process is characterized by the strong preferential oxidation of Al as compared to Ga, and of Ga as compared to As. This experimental observation, which has been accurately quantified by using x‐ray photoelectron spectroscopy, is connected to the different heats of formation of the corresponding oxides. The oxide grown by ion beam oxidation shows a strong depletion in As and relatively low oxidation of As as well. The depletion can be associated with the preferential sputtering of the As oxide in respect to other compounds whereas the low oxidation is due to the low heat of formation. In contrast Al is rapidly and fully oxidized, turning the outermost layer of the altered layer to a single Al2O3 overlayer, as observed by transmission electron microscopy. The radiation enhanced diffusion of oxygen and aluminum in the altered layer explains the large thickness of these altered layers and the formation of Al oxides on top of the layers. For the case of ion‐beam oxidation of GaAs a simulation program has been developed which describes adequately the various growth mechanisms experimentally observed
Resumo:
BACKGROUND: In patients with Kawasaki disease, serial evaluation of the distribution and size of coronary artery aneurysms (CAA) is necessary for risk stratification and therapeutic management. Although transthoracic echocardiography is often sufficient for this purpose initially, visualization of the coronary arteries becomes progressively more difficult as children grow. We sought to prospectively compare coronary magnetic resonance angiography (MRA) and x-ray coronary angiography findings in patients with CAA caused by Kawasaki disease. METHODS AND RESULTS: Six subjects (age 10 to 25 years) with known CAA from Kawasaki disease underwent coronary MRA using a free-breathing T2-prepared 3D bright blood segmented k-space gradient echo sequence with navigator gating and tracking. All patients underwent x-ray coronary angiography within a median of 75 days (range, 1 to 359 days) of coronary MRA. There was complete agreement between MRA and x-ray angiography in the detection of CAA (n=11), coronary artery stenoses (n=2), and coronary occlusions (n=2). Excellent agreement was found between the 2 techniques for detection of CAA maximal diameter (mean difference=0.4 +/- 0.6 mm) and length (mean difference=1.4 +/- 1.6 mm). The 2 methods showed very similar results for proximal coronary artery diameter (mean difference=0.2 +/- 0.5 mm) and CAA distance from the ostia (mean difference=0.1 +/- 1.5 mm). CONCLUSION: Free-breathing 3D coronary MRA accurately defines CAA in patients with Kawasaki disease. This technique may provide a non-invasive alternative when transthoracic echocardiography image quality is insufficient, thereby reducing the need for serial x-ray coronary angiography in this patient group.
Resumo:
Background: Several patterns of grey and white matter changes have been separately described in young adults with first-episode psychosis. Concomitant investigation of grey and white matter densities in patients with first-episode psychosis without other psychiatric comorbidities that include all relevant imaging markers could provide clues to the neurodevelopmental hypothesis in schizophrenia. Methods: We recruited patients with first-episode psychosis diagnosed according to the DSM-IV-TR and matched controls. All participants underwent magnetic resonance imaging (MRI). Voxel-based morphometry (VBM) analysis and mean diffusivity voxel-based analysis (VBA) were used for grey matter data. Fractional anisotropy and axial, radial and mean diffusivity were analyzed using tract-based spatial statistics (TBSS) for white matter data. Results: We included 15 patients and 16 controls. The mean diffusivity VBA showed significantly greater mean diffusivity in the first-episode psychosis than in the control group in the lingual gyrus bilaterally, the occipital fusiform gyrus bilaterally, the right lateral occipital gyrus and the right inferior temporal gyrus. Moreover, the TBSS analysis revealed a lower fractional anisotropy in the first-episode psychosis than in the control group in the genu of the corpus callosum, minor forceps, corticospinal tract, right superior longitudinal fasciculus, left middle cerebellar peduncle, left inferior longitudinal fasciculus and the posterior part of the fronto-occipital fasciculus. This analysis also revealed greater radial diffusivity in the first-episode psychosis than in the control group in the right corticospinal tract, right superior longitudinal fasciculus and left middle cerebellar peduncle. Limitations: The modest sample size and the absence of women in our series could limit the impact of our results. Conclusion: Our results highlight the structural vulnerability of grey matter in posterior areas of the brain among young adult male patients with first-episode psychosis. Moreover, the concomitant greater radial diffusivity within several regions already revealed by the fractional anisotropy analysis supports the idea of a late myelination in patients with first-episode psychosis.
Resumo:
Over the past years, cardiovascular magnetic resonance (CMR) has proven its efficacy in large clinical trials, and consequently, the assessment of function, viability, and ischaemia by CMR is now an integrated part of the diagnostic armamentarium in cardiology. By combining these CMR applications, coronary artery disease (CAD) can be detected in its early stages and this allows for interventions with the goal to reduce complications of CAD such as infarcts and subsequently chronic heart failure (CHF). As the CMR examinations are robust and reproducible and do not expose patients to radiation, they are ideally suited for repetitive studies without harm to the patients. Since CAD is a chronic disease, the option to monitor CAD regularly by CMR over many decades is highly valuable. Cardiovascular magnetic resonance also progressed recently in the setting of acute coronary syndromes. In this situation, CMR allows for important differential diagnoses. Cardiovascular magnetic resonance also delineates precisely the different tissue components in acute myocardial infarction such as necrosis, microvascular obstruction (MVO), haemorrhage, and oedema, i.e. area at risk. With these features, CMR might also become the preferred tool to investigate novel treatment strategies in clinical research. Finally, in CHF patients, the versatility of CMR to assess function, flow, perfusion, and viability and to characterize tissue is helpful to narrow the differential diagnosis and to monitor treatment.
Resumo:
BACKGROUND: Obesity is a major health problem in the Western world. Among obese subjects cardiac pathology is common, but conventional noninvasive imaging modalities are often suboptimal for detailed evaluation of cardiac structure and function. We investigated whether cardiovascular magnetic resonance imaging (CMR) can better characterize possible cardiac abnormalities associated with obesity, in the absence of other confounding comorbidities. METHODS: In this prospective cross-sectional study, CMR was used to quantify left and right ventricular volumes, ejection fraction, mass, cardiac output, and apical left ventricular rotation in 25 clinically healthy obese men and 25 age-matched lean controls. RESULTS: Obese subjects had higher left ventricular mass (203 +/- 38 g vs. 163 +/- 22 g, p < 0.001), end-diastolic volume (176 +/- 29 mL vs. 156 +/- 25 mL, p < 0.05), and cardiac output (8.2 +/- 1.2 L/min vs. 6.4 +/- 1.3 L/min, p < 0.001). The obese also had increased right ventricular mass (105 +/- 25 g vs. 87 +/- 18 g, p < 0.005) and end-diastolic volume (179 +/- 36 mL vs. 155 +/- 28 mL, p < 0.05). When indexed for height, differences in left and right ventricular mass, and left ventricular end-diastolic volume remained significant. Apical left ventricular rotation and rotational velocity patterns were also different between obese and lean subjects. CONCLUSIONS: Obesity is independently associated with remodeling of the heart. Cardiovascular magnetic resonance imaging identifies subtle cardiac abnormalities and may be the preferred imaging technique to evaluate cardiac structure and function in the obese.
Resumo:
In addition to the importance of sample preparation and extract separation, MS detection is a key factor in the sensitive quantification of large undigested peptides. In this article, a linear ion trap MS (LIT-MS) and a triple quadrupole MS (TQ-MS) have been compared in the detection of large peptides at subnanomolar concentrations. Natural brain natriuretic peptide, C-peptide, substance P and D-Junk-inhibitor peptide, a full D-amino acid therapeutic peptide, were chosen. They were detected by ESI and simultaneous MS(1) and MS(2) acquisitions. With direct peptide infusion, MS(2) spectra revealed that fragmentation was peptide dependent, milder on the LIT-MS and required high collision energies on the TQ-MS to obtain high-intensity product ions. Peptide adsorption on surfaces was overcome and peptide dilutions ranging from 0.1 to 25 nM were injected onto an ultra high-pressure LC system with a 1 mm id analytical column and coupled with the MS instruments. No difference was observed between the two instruments when recording in LC-MS(1) acquisitions. However, in LC-MS(2) acquisitions, a better sensitivity in the detection of large peptides was observed with the LIT-MS. Indeed, with the three longer peptides, the typical fragmentation in the TQ-MS resulted in a dramatic loss of sensitivity (> or = 10x).
Resumo:
PURPOSE: Atherosclerosis results in a considerable medical and socioeconomic impact on society. We sought to evaluate novel magnetic resonance imaging (MRI) angiography and vessel wall sequences to visualize and quantify different morphologic stages of atherosclerosis in a Watanabe hereditary hyperlipidemic (WHHL) rabbit model. MATERIAL AND METHODS: Aortic 3D steady-state free precession angiography and subrenal aortic 3D black-blood fast spin-echo vessel wall imaging pre- and post-Gadolinium (Gd) was performed in 14 WHHL rabbits (3 normal, 6 high-cholesterol diet, and 5 high-cholesterol diet plus endothelial denudation) on a commercial 1.5 T MR system. Angiographic lumen diameter, vessel wall thickness, signal-/contrast-to-noise analysis, total vessel area, lumen area, and vessel wall area were analyzed semiautomatically. RESULTS: Pre-Gd, both lumen and wall dimensions (total vessel area, lumen area, vessel wall area) of group 2 + 3 were significantly increased when compared with those of group 1 (all P < 0.01). Group 3 animals had significantly thicker vessel walls than groups 1 and 2 (P < 0.01), whereas angiographic lumen diameter was comparable among all groups. Post-Gd, only diseased animals of groups 2 + 3 showed a significant (>100%) signal-to-noise ratio and contrast-to-noise increase. CONCLUSIONS: A combination of novel 3D magnetic resonance angiography and high-resolution 3D vessel wall MRI enabled quantitative characterization of various atherosclerotic stages including positive arterial remodeling and Gd uptake in a WHHL rabbit model using a commercially available 1.5 T MRI system.
Resumo:
Acid-sensing ion channels (ASICs) are neuronal Na(+) channels that are members of the epithelial Na(+) channel/degenerin family and are transiently activated by extracellular acidification. ASICs in the central nervous system have a modulatory role in synaptic transmission and are involved in cell injury induced by acidosis. We have recently demonstrated that ASIC function is regulated by serine proteases. We provide here evidence that this regulation of ASIC function is tightly linked to channel cleavage. Trypsin cleaves ASIC1a with a similar time course as it changes ASIC1a function, whereas ASIC1b, whose function is not modified by trypsin, is not cleaved. Trypsin cleaves ASIC1a at Arg-145, in the N-terminal part of the extracellular loop, between a highly conserved sequence and a sequence that is critical for ASIC1a inhibition by the venom of the tarantula Psalmopoeus cambridgei. This channel domain controls the inactivation kinetics and co-determines the pH dependence of ASIC gating. It undergoes a conformational change during inactivation, which renders the cleavage site inaccessible to trypsin in inactivated channels.