962 resultados para INNER-STRIPE LASERS
Resumo:
Peer reviewed
Resumo:
Date of Acceptance: 15/07/2015
Resumo:
The author is supported by an NSERC PDF.
Resumo:
Peer reviewed
Resumo:
Date of Acceptance: 15/07/2015
Resumo:
The author is supported by an NSERC PDF.
Resumo:
We consider experimentally and theoretically a refined parameter space in a mode-locked fiber laser near the transition to multi-pulsing. Increasing cavity energy drives the dynamics through a periodic instability to chaotic dynamics. © 2010 Optical Society of America.
Resumo:
We review our recent progress on the realisation of pulse shaping in passively-mode-locked fibre lasers by inclusion of an amplitude and/or phase spectral filter into the laser cavity. We numerically show that depending on the amplitude transfer function of the in-cavity filter, various advanced temporal waveforms can be generated, including parabolic, flattop and triangular pulses. An application of this approach using a flattop spectral filter is shown to achieve the direct generation of high-quality sinc-shaped optical Nyquist pulses with a widely tunable bandwidth from the laser oscillator. We also present the operation of an ultrafast fibre laser in which conventional, dispersion-managed and dissipative soliton mode-locking regimes can be selectively and reliably targeted by adaptively changing the dispersion profile and bandwidth programmed on an in-cavity programmable filter.
Resumo:
We present an ultra-long Raman fibre laser amplified system which, with only a single pump wavelength, provides comparable gain flatness and broader spectral bandwidth than a conventional gain flattened C-band EDFA. A 20x42.7Gb/s experiment shows compatibility with DWDM systems. ©2010 IEEE.
Resumo:
We numerically investigate a fiber laser which contains an active fiber along with a dispersion decreasing fiber both operating at normal dispersion. Large-bandwidth pulses are obtained that can be linearly compressed resulting in ultra-short high-energy pulse generation. ©2010 Crown.
Resumo:
We present a theoretical description of the generation of ultra-short, high-energy pulses in two laser cavities driven by periodic spectral filtering or dispersion management. Critical in driving the intra-cavity dynamics is the nontrivial phase profiles generated and their periodic modification from either spectral filtering or dispersion management. For laser cavities with a spectral filter, the theory gives a simple geometrical description of the intra-cavity dynamics and provides a simple and efficient method for optimizing the laser cavity performance. In the dispersion managed cavity, analysis shows the generated self-similar behavior to be governed by the porous media equation with a rapidly-varying, mean-zero diffusion coefficient whose solution is the well-known Barenblatt similarity solution with parabolic profile. © 2010 Copyright SPIE - The International Society for Optical Engineering.
Resumo:
We consider experimentally and theoretically a refined parameter space near the transition to multi-pulse modelocking. Near the transition, the onset of instability is initiated by a Hopf (periodic) bifurcation. As cavity energy is increased, the band of unstable, oscillatory modes generates a chaotic behavior between single- and multi-pulse operation. Both theory and experiment are in good qualitative agreement and they suggest that the phenomenon is of a universal nature in mode-locked lasers at the onset of multi-pulsing from N to N + 1 pulses per round trip. This is the first theoretical and experimental characterization of the transition behavior, made possible by a highly refined tuning of the gain pump level. © 2010 Copyright SPIE - The International Society for Optical Engineering.
Resumo:
In the last decade, vertical-external-cavity surface-emitting lasers (VECSELs) have become promising sources of ultrashort laser pulses. While the mode-locked operation has been strongly relying on costly semiconductor saturable-Absorber mirrors for many years, new techniques have been found for pulse formation. Mode-locking VECSELs are nowadays not only achievable by using a variety of saturable absorbers, but also by using a saturable-Absorber-free technique referred to as self-mode-locking (SML), which is to be highlighted here.
Resumo:
We present a theoretical description of the generation of ultra-short, high-energy pulses in two laser cavities driven by periodic spectral filtering or dispersion management. Critical in driving the intra-cavity dynamics is the nontrivial phase profiles generated and their periodic modification from either spectral filtering or dispersion management. For laser cavities with a spectral filter, the theory gives a simple geometrical description of the intra-cavity dynamics and provides a simple and efficient method for optimizing the laser cavity performance. In the dispersion managed cavity, analysis shows the generated self-similar behavior to be governed by the porous media equation with a rapidly-varying, mean-zero diffusion coefficient whose solution is the well-known Barenblatt similarity solution with parabolic profile. © 2010 American Institute of Physics.