778 resultados para INDEPENDENT WALKING
Resumo:
Although many Irish nationalists at the turn of the twentieth century expected Ireland to achieve self-government within their own lifetime, few could have anticipated its form or consequences: the promised land that they envisioned was to be achieved through political means rather than insurrection and partition. But while the violence of the revolutionary decade created the political structures that shape present-day Ireland, the social and economic changes of the final decades of the twentieth century, by rupturing cultural patterns that predated independence, arguably brought about a more profound dislocation. Within Southern Ireland, the focus of this essay, the long era between these periods of upheaval was initially characterised by the pursuit of national sovereignty and self-sufficiency. In contrast, the decades after the Second World War saw the gradual abandonment of that vision in favour of a more pragmatic policy of economic liberalisation. The resulting ‘modernisation’ saw many traditional aspects of Irish society replaced by individualistic values more typical of contemporary European society.
Resumo:
Streets are key elements of urban space; they are in essence public spaces and connect diverse areas of the city weaving the urban fabric. Once motorways replace existing streets, they tear the fabric and transform the qualities of the urban landscape. As in many cities throughout the world, in Belfast during the 1960s the growth of private car ownership took over the development of the city. The Roads Authority developed plans (1964/1969) to build a ring road surrounding most of the city. This deeply affected the use and shape of the city until today. This plan focused on encouraging the move of population to the outskirts of the city. However, the connections between the city centre and its surrounding neighbourhoods were broken. Only the southern stretch of the motorway was not built. This allowed the connection between South Belfast and the city centre to remain seamless. The current possibility of building the southern stretch of motorway threatens this continuity. This paper will highlight the very high value of streets by analysing their physical qualities.
Resumo:
Spectroscopic studies of line emission intensities and ratios offer an attractive option in the\r\ndevelopment of non-invasive plasma diagnostics. Evaluating ratios of selected He I line\r\nemission profiles from the singlet and triplet neutral helium spin systems allows for simultaneous\r\nmeasurement of electron density (ne) and temperature (Te) profiles. Typically, this powerful\r\ndiagnostic tool is limited by the relatively long relaxation times of the 3S metastable term of helium\r\nthat populates the triplet spin system, and on which electron temperature sensitive lines are based.\r\nBy developing a time dependent analytical solution, we model the time evolution of the two spin\r\nsystems. We present a hybrid time dependent/independent line ratio solution that improves the\r\nrange of application of this diagnostic technique in the scrape-off layer (SOL) and edge plasma\r\nregions when comparing it against the current equilibrium line ratio helium model used at\r\nTEXTOR.
Resumo:
Childhood obesity is commonly associated with a pes planus foot type and altered lower limb joint function during walking. However, limited information has been reported on dynamic intersegment foot motion with the level of obesity in children. The aim of this study was to explore the relationships between intersegment foot motion during gait and body fat in boys age 7 to 11 years. Fat mass was measured in fifty-five boys using air displacement plethysmography. Three-dimensional gait analysis was conducted on the right foot of each participant using the 3DFoot model to capture angular motion of the shank, calcaneus, midfoot and metatarsals. Two multivariate statistical techniques were employed; principle component analysis reduced the multidimensional nature of gait analysis, and multiple linear regression analysis accounted for potential confounding factors. Higher fat mass predicted greater plantarflexion of the calcaneus during the first half and end of stance phase and at the end of swing phase. Greater abduction of the calcaneus throughout stance and swing was predicted by greater fat mass. At the midfoot, higher fat mass predicted greater dorsiflexion and eversion throughout the gait cycle. The findings present novel information on the relationships between intersegment angular motion of the foot and body fat in young boys. The data indicates a more pronated foot type in boys with greater body fat. These findings have clinical implications for pes planus and a predisposition for pain and discomfort during weight bearing activities potentially reducing motivation in obese children to be physically active.
Resumo:
Background: Muscle atrophy is seen ~ 25 % of patients with cardiopulmonary disorders, such as chronic obstructive pulmonary disorder and chronic heart failure. Multiple hypotheses exist for this loss, including inactivity, inflammation, malnutrition and hypoxia. Healthy individuals exposed to chronic hypobaric hypoxia also show wasting, suggesting hypoxia alone is sufficient to induce atrophy. Myostatin regulates muscle mass and may underlie hypoxic-induced atrophy. Our previous work suggests a decrease in plasma myostatin and increase in muscle myostatin following 10 hours of exposure to 12 % O2. Aims: To establish the effect of hypoxic dose on plasma myostatin concentration. Concentration of plasma myostatin following two doses of normobaric hypoxia (10.7 % and 12.3 % O2) in a randomised, single-blinded crossover design (n = 8 lowlanders, n = 1 Sherpa), with plasma collected pre (0 hours), post (2 hours) and 2 hours following (4 hours) exposure. Results: An effect of time was noted, plasma myostatin decreased at 4 hours but not 2 hours relative to 0 hours (p = 0.01; 0 hours = 3.26 [0.408] ng.mL-1, 2 hours = 3.33, [0.426] ng.mL-1, 4 hours = 2.92, [0.342] ng.mL-1). No difference in plasma myostatin response was seen between hypoxic conditions (10.7 % vs. 12.3 % O2). Myostatin reduction in the Sherpa case study was similar to the lowlander cohort. Conclusions: Decreased myostatin peptide expression suggests hypoxia in isolation is sufficient to challenge muscle homeostasis, independent of confounding factors seen in chronic cardiopulmonary disorders, in a manner consistent with our previous work. Decreased myostatin peptide may represent flux towards peripheral muscle, or a reduction to protect muscle mass. Chronic adaption to hypoxia does not appear to protect against this response, however larger cohorts are needed to confirm this. Future work will examine tissue changes in parallel with systemic effects.
Resumo:
Cloud computing is increasingly being adopted in different scenarios, like social networking, business applications, scientific experiments, etc. Relying in virtualization technology, the construction of these computing environments targets improvements in the infrastructure, such as power-efficiency and fulfillment of users’ SLA specifications. The methodology usually applied is packing all the virtual machines on the proper physical servers. However, failure occurrences in these networked computing systems can induce substantial negative impact on system performance, deviating the system from ours initial objectives. In this work, we propose adapted algorithms to dynamically map virtual machines to physical hosts, in order to improve cloud infrastructure power-efficiency, with low impact on users’ required performance. Our decision making algorithms leverage proactive fault-tolerance techniques to deal with systems failures, allied with virtual machine technology to share nodes resources in an accurately and controlled manner. The results indicate that our algorithms perform better targeting power-efficiency and SLA fulfillment, in face of cloud infrastructure failures.
Resumo:
Embedded real-time systems often have to support the embedding system in very different and changing application scenarios. An aircraft taxiing, taking off and in cruise flight is one example. The different application scenarios are reflected in the software structure with a changing task set and thus different operational modes. At the same time there is a strong push for integrating previously isolated functionalities in single-chip multicore processors. On such multicores the behavior of the system during a mode change, when the systems transitions from one mode to another, is complex but crucial to get right. In the past we have investigated mode change in multiprocessor systems where a mode change requires a complete change of task set. Now, we present the first analysis which considers mode changes in multicore systems, which use global EDF to schedule a set of mode independent (MI) and mode specific (MS) tasks. In such systems, only the set of MS tasks has to be replaced during mode changes, without jeopardizing the schedulability of the MI tasks. Of prime concern is that the mode change is safe and efficient: i.e. the mode change needs to be performed in a predefined time window and no deadlines may be missed as a function of the mode change.
Resumo:
Purpose: Because walking is highly recommended for prevention and treatment of obesity and some of its biomechanical aspects are not clearly understood for overweight people, we compared the absolute and normalized ground reaction forces (GRF), plantar pressures, and temporal parameters of normal-weight and overweight participants during overground walking. Method: A force plate and an in-shoe pressure system were used to record GRF, plantar pressures (foot divided in 10 regions), and temporal parameters of 17 overweight adults and 17 gender-matched normal-weight adults while walking. Results: With high effect sizes, the overweight participants showed higher absolute medial-lateral and vertical GRF and pressure peaks in the central rearfoot, lateral midfoot, and lateral and central forefoot. However, analyzing normalized (scaled to body weight) data, the overweight participants showed lower vertical and anterior-posterior GRF and lower pressure peaks in the medial rearfoot and hallux, but the lateral forefoot peaks continued to be greater compared with normal-weight participants. Time of occurrence of medial-lateral GRF and pressure peaks in the midfoot occurred later in overweight individuals. Conclusions: The overweight participants adapted their gait pattern to minimize the consequences of the higher vertical and propulsive GRF in their musculoskeletal system. However, they were not able to improve their balance as indicated by medial-lateral GRF. The overweight participants showed higher absolute pressure peaks in 4 out of 10 foot regions. Furthermore, the normalized data suggest that the lateral forefoot in overweight adults was loaded more than the proportion of their extra weight, while the hallux and medial rearfoot were seemingly protected.
Resumo:
Waveform tomographic imaging of crosshole georadar data is a powerful method to investigate the shallow subsurface because of its ability to provide images of pertinent petrophysical parameters with extremely high spatial resolution. All current crosshole georadar waveform inversion strategies are based on the assumption of frequency-independent electromagnetic constitutive parameters. However, in reality, these parameters are known to be frequency-dependent and complex and thus recorded georadar data may show significant dispersive behavior. In this paper, we evaluate synthetically the reconstruction limits of a recently published crosshole georadar waveform inversion scheme in the presence of varying degrees of dielectric dispersion. Our results indicate that, when combined with a source wavelet estimation procedure that provides a means of partially accounting for the frequency-dependent effects through an "effective" wavelet, the inversion algorithm performs remarkably well in weakly to moderately dispersive environments and has the ability to provide adequate tomographic reconstructions.
Resumo:
OBJECTIVE: While there is a dose-response relationship between physical activity (PA) and health benefit, little is known about the effectiveness of different PA prescriptions on total daily PA. AIM: To test, under real-life conditions and using an objective, non-invasive measurement technique (accelerometry), the effect of prescribing additional physical activity (walking only) of different durations (30, 60 and 90 min/day) on compliance (to the activity prescribed) and compensation (to total daily PA). Participants in each group were prescribed 5 sessions of walking per week over 4 weeks. METHODS: 55 normal-weight and overweight women (mean BMI 25 ± 5 kg/m(2), height 165 ± 1 cm, weight 68 ± 2 kg and mean age 27 ± 1 years) were randomly assigned to 3 prescription groups: 30, 60 or 90 min/day PA. RESULTS: Walking duration resulted in an almost linear increase in the number of steps per day during the prescription period from an average of about 10,000 steps per day for the 30-min prescription to about 14,000 for the 90-min prescription. Compliance was excellent for the 30-min prescription but decreased significantly with 60-min and 90-min prescriptions. In parallel, degree of compensation subsequent to exercise increased progressively as length of prescription increased. CONCLUSION: A 30-min prescription of extra walking 5 times per week was well tolerated. However, in order to increase total PA further, much more than 60 min of walking may need to be prescribed in the majority of individuals. While total exercise 'volume' increased with prescriptions longer than 30 min, compliance to the prescription decreased and greater compensation was evident. © 2014 S. Karger GmbH, Freiburg.
Resumo:
ABSTRACT: q-Space-based techniques such as diffusion spectrum imaging, q-ball imaging, and their variations have been used extensively in research for their desired capability to delineate complex neuronal architectures such as multiple fiber crossings in each of the image voxels. The purpose of this article was to provide an introduction to the q-space formalism and the principles of basic q-space techniques together with the discussion on the advantages as well as challenges in translating these techniques into the clinical environment. A review of the currently used q-space-based protocols in clinical research is also provided.
Resumo:
Tumor-initiating cells with stem cell properties are believed to sustain the growth of gliomas, but proposed markers such as CD133 cannot be used to identify these cells with sufficient specificity. We report an alternative isolation method purely based on phenotypic qualities of glioma-initiating cells (GICs), avoiding the use of molecular markers. We exploited intrinsic autofluorescence properties and a distinctive morphology to isolate a subpopulation of cells (FL1(+)) from human glioma or glioma cultures. FL1(+) cells are capable of self-renewal in vitro, tumorigenesis in vivo and preferentially express stem cell genes. The FL1(+) phenotype did not correlate with the expression of proposed GIC markers. Our data propose an alternative approach to investigate tumor-initiating potential in gliomas and to advance the development of new therapies and diagnostics.
Resumo:
Metastases are responsible for most cancer-related deaths. One of the hallmarks of metastatic cells is increased motility and migration through extracellular matrixes. These processes rely on specific small GTPases, in particular those of the Rho family. Deleted in liver cancer-1 (DLC1) is a tumor suppressor that bears a RhoGAP activity. This protein is lost in most cancers, allowing malignant cells to proliferate and disseminate in a Rho-dependent manner. However, DLC1 is also a scaffold protein involved in alternative pathways leading to tumor and metastasis suppressor activities. Recently, substantial information has been gathered on these mechanisms and this review is aiming at describing the potential and known alternative GAP-independent mechanisms allowing DLC1 to impair migration, invasion, and metastasis formation.
Resumo:
BACKGROUND: Earlobe crease (ELC) has been associated with cardiovascular diseases (CVD) or risk factors (CVRF) and could be a marker predisposing to CVD. However, most studies studied only a small number of CVRF and no complete assessment of the associations between ELC and CVRF has been performed in a single study. METHODS: Population-based study (n = 4635, 46.7 % men) conducted between 2009 and 2012 in Lausanne, Switzerland. RESULTS: Eight hundred six participants (17.4 %) had an ELC. Presence of ELC was associated with male gender and older age. After adjusting for age and gender (and medication whenever necessary), presence of ELC was significantly (p < 0.05) associated with higher levels of body mass index (BMI) [adjusted mean ± standard error: 27.0 ± 0.2 vs. 26.02 ± 0.07 kg/m(2)], triglycerides [1.40 ± 0.03 vs. 1.36 ± 0.01 mmol/L] and insulin [8.8 ± 0.2 vs. 8.3 ± 0.1 μIU/mL]; lower levels of HDL cholesterol [1.61 ± 0.02 vs. 1.64 ± 0.01 mmol/L]; higher frequency of abdominal obesity [odds ratio and (95 % confidence interval) 1.20 (1.02; 1.42)]; hypertension [1.41 (1.18; 1.67)]; diabetes [1.43 (1.15; 1.79)]; high HOMA-IR [1.19 (1.00; 1.42)]; metabolic syndrome [1.28 (1.08; 1.51)] and history of CVD [1.55 (1.21; 1.98)]. No associations were found between ELC and estimated cardiovascular risk, inflammatory or liver markers. After further adjustment on BMI, only the associations between ELC and hypertension [1.30 (1.08; 1.56)] and history of CVD [1.47 (1.14; 1.89)] remained significant. For history of CVD, further adjustment on diabetes, hypertension, total cholesterol and smoking led to similar results [1.36 (1.05; 1.77)]. CONCLUSION: In this community-based sample ELC was significantly and independently associated with hypertension and history of CVD.
Resumo:
SUMMARY Background: Age related declines in lower extremity strength have been associated with impaired mobility and changes in gait patterns, which increase the likelihood of falls. Since community dwelling adults encounter a wide range of locomotor challenges including uneven and obstmcted walking surfaces, we examined the effect of a strength 11 and balance exercise program on obstructed walking in postmenopausal women. Objectives: This study examined the effect of a weighted-vest strength and balance exercise program on adaptations of the stance leg during obstacle walking in postmenopausal women. Methods: Eighteen women aged 44-62 years who had not engaged in regular resistance training for the past year were recruited from the St. Catharines community to participate in this study. Eleven women volunteered for an aerobic (walking), strength, and balance training program 3 times per week for 12 weeks while 7 women volunteered as controls. Measurements included: force platform dynamic balance measure of the center of pressure (COP) and ground reaction forces (GRFs) in the stance leg while going over obstacles of different heights (0,5, 10,25 and 30 cm); and isokinetic strength measures of knee and ankle extension and flexion. Results: Of the 18 women, who began the trial, 16 completed it. The EX group showed a significant increase of 40% in ankle plantar flexion strength (P < 0.05). However, no improvements in measures of COP or GRFs were observed for either group. Failure to detect any changes in measures of dynamic balance may be due to small sample size. Conclusions: Postmenopausal women experience significant improvements in ankle strength with 12 weeks of a weighted-vest balance and strength training program, however, these changes do not seem to be associated with any improvement in measures of dynamic balance.