899 resultados para Hyperbolic Dynamic System


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a multiloop robust control strategy is proposed based on H∞ control and a partial least squares (PLS) model (H∞_PLS) for multivariable chemical processes. It is developed especially for multivariable systems in ill-conditioned plants and non-square systems. The advantage of PLS is to extract the strongest relationship between the input and the output variables in the reduced space of the latent variable model rather than in the original space of the highly dimensional variables. Without conventional decouplers, the dynamic PLS framework automatically decomposes the MIMO process into multiple single-loop systems in the PLS subspace so that the controller design can be simplified. Since plant/model mismatch is almost inevitable in practical applications, to enhance the robustness of this control system, the controllers based on the H∞ mixed sensitivity problem are designed in the PLS latent subspace. The feasibility and the effectiveness of the proposed approach are illustrated by the simulation results of a distillation column and a mixing tank process. Comparisons between H∞_PLS control and conventional individual control (either H∞ control or PLS control only) are also made

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, our previous work on Principal Component Analysis (PCA) based fault detection method is extended to the dynamic monitoring and detection of loss-of-main in power systems using wide-area synchrophasor measurements. In the previous work, a static PCA model was built and verified to be capable of detecting and extracting system faulty events; however the false alarm rate is high. To address this problem, this paper uses a well-known ‘time lag shift’ method to include dynamic behavior of the PCA model based on the synchronized measurements from Phasor Measurement Units (PMU), which is named as the Dynamic Principal Component Analysis (DPCA). Compared with the static PCA approach as well as the traditional passive mechanisms of loss-of-main detection, the proposed DPCA procedure describes how the synchrophasors are linearly
auto- and cross-correlated, based on conducting the singular value decomposition on the augmented time lagged synchrophasor matrix. Similar to the static PCA method, two statistics, namely T2 and Q with confidence limits are calculated to form intuitive charts for engineers or operators to monitor the loss-of-main situation in real time. The effectiveness of the proposed methodology is evaluated on the loss-of-main monitoring of a real system, where the historic data are recorded from PMUs installed in several locations in the UK/Ireland power system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strengthening reinforced concrete (RC) structures by externally bonded FRP composites has been widely used for static loading and seismic retrofitting since 1990s. More recently many studies on strengthening concrete and masonry structures with externally bonded FRP for improved blast and impact resistance in protective engineering have also been conducted. The bond behaviour between the FRP and concrete plays a critical role in a strengthening system with externally bonded FRP. However, the understanding of how the bond between FRP and concrete performs under high strain rate is severely limited. Due to the dynamic characteristics of blast and impact loading, the bond behaviour between FRP and concrete under such loading is very different from that under static loading. This paper presents a study on the dynamic bond-slip behaviour based on both the numerical analysis and test results. A dynamic bond-slip model is proposed in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highway structures such as bridges are subject to continuous degradation primarily due to ageing and environmental factors. A rational transport policy requires the monitoring of this transport infrastructure to provide adequate maintenance and guarantee the required levels of transport service and safety. In Europe, this is now a legal requirement - a European Directive requires all member states of the European Union to implement a Bridge Management System. However, the process is expensive, requiring the installation of sensing equipment and data acquisition electronics on the bridge. This paper investigates the use of an instrumented vehicle fitted with accelerometers on its axles to monitor the dynamic behaviour of bridges as an indicator of its structural condition. This approach eliminates the need for any on-site installation of measurement equipment. A simplified half-car vehicle-bridge interaction model is used in theoretical simulations to test the possibility of extracting the dynamic parameters of the bridge from the spectra of the vehicle accelerations. The effect of vehicle speed, vehicle mass and bridge span length on the detection of the bridge dynamic parameters are investigated. The algorithm is highly sensitive to the condition of the road profile and simulations are carried out for both smooth and rough profiles

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A conventional way to identify bridge frequencies is utilizing vibration data measured directly from the bridge. A drawback with this approach is that the deployment and maintenance of the vibration sensors are generally costly and time-consuming. One way to cope with the drawback is an indirect approach utilizing vehicle vibrations while the vehicle passes over the bridge. In the indirect approach, however, the vehicle vibration includes the effect of road surface roughness, which makes it difficult to extract the bridge modal properties. One solution may be subtracting signals of two trailers towed by a vehicle to reduce the effect of road surface roughness. A simplified vehicle-bridge interaction model is used in the numerical simulation; the vehicle - trailer and bridge system are modeled as a coupled model. In addition, a laboratory experiment is carried out to verify results of the simulation and examine feasibility of the damage detection by the indirect method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this brief, a hybrid filter algorithm is developed to deal with the state estimation (SE) problem for power systems by taking into account the impact from the phasor measurement units (PMUs). Our aim is to include PMU measurements when designing the dynamic state estimators for power systems with traditional measurements. Also, as data dropouts inevitably occur in the transmission channels of traditional measurements from the meters to the control center, the missing measurement phenomenon is also tackled in the state estimator design. In the framework of extended Kalman filter (EKF) algorithm, the PMU measurements are treated as inequality constraints on the states with the aid of the statistical criterion, and then the addressed SE problem becomes a constrained optimization one based on the probability-maximization method. The resulting constrained optimization problem is then solved using the particle swarm optimization algorithm together with the penalty function approach. The proposed algorithm is applied to estimate the states of the power systems with both traditional and PMU measurements in the presence of probabilistic data missing phenomenon. Extensive simulations are carried out on the IEEE 14-bus test system and it is shown that the proposed algorithm gives much improved estimation performances over the traditional EKF method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a recursive filter algorithm is developed to deal with the state estimation problem for power systems with quantized nonlinear measurements. The measurements from both the remote terminal units and the phasor measurement unit are subject to quantizations described by a logarithmic quantizer. Attention is focused on the design of a recursive filter such that, in the simultaneous presence of nonlinear measurements and quantization effects, an upper bound for the estimation error covariance is guaranteed and subsequently minimized. Instead of using the traditional approximation methods in nonlinear estimation that simply ignore the linearization errors, we treat both the linearization and quantization errors as norm-bounded uncertainties in the algorithm development so as to improve the performance of the estimator. For the power system with such kind of introduced uncertainties, a filter is designed in the framework of robust recursive estimation, and the developed filter algorithm is tested on the IEEE benchmark power system to demonstrate its effectiveness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper climate discrete-time dynamic models for the inside air temperature of a soilless greenhouse are identified, using data acquired during two different periods of the year. These models employ data from air temperature and relative humidity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-03

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An innovation network can be considered as a complex adaptive system with evolution affected by dynamic environments. This paper establishes a multi-agent-based evolution model of innovation networks under dynamic settings through computational and logical modeling, and a multi-agent system paradigm. This evolution model is composed of several sub-models of agents' knowledge production by independent innovations in dynamic situations, knowledge learning by cooperative innovations covering agents' heterogeneities, decision-making for innovation selections, and knowledge update considering decay factors. On the basis of above-mentioned sub-models, an evolution rule for multi-agent based innovation network system is given. The proposed evolution model can be utilized to simulate and analyze different scenarios of innovation networks in various dynamic environments and support decision-making for innovation network optimization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A prominent hypothesis states that specialized neural modules within the human lateral frontopolar cortices (LFPCs) support “relational integration” (RI), the solving of complex problems using inter-related rules. However, it has been proposed that LFPC activity during RI could reflect the recruitment of additional “domain-general” resources when processing more difficult problems in general as opposed to RI specifi- cally. Moreover, theoretical research with computational models has demonstrated that RI may be supported by dynamic processes that occur throughout distributed networks of brain regions as opposed to within a discrete computational module. Here, we present fMRI findings from a novel deductive reasoning paradigm that controls for general difficulty while manipulating RI demands. In accordance with the domain- general perspective, we observe an increase in frontoparietal activation during challenging problems in general as opposed to RI specifically. Nonetheless, when examining frontoparietal activity using analyses of phase synchrony and psychophysiological interactions, we observe increased network connectivity during RI alone. Moreover, dynamic causal modeling with Bayesian model selection identifies the LFPC as the effective connectivity source. Based on these results, we propose that during RI an increase in network connectivity and a decrease in network metastability allows rules that are coded throughout working memory systems to be dynamically bound. This change in connectivity state is top-down propagated via a hierarchical system of domain-general networks with the LFPC at the apex. In this manner, the functional network perspective reconciles key propositions of the globalist, modular, and computational accounts of RI within a single unified framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an artificial neural network applied to the forecasting of electricity market prices, with the special feature of being dynamic. The dynamism is verified at two different levels. The first level is characterized as a re-training of the network in every iteration, so that the artificial neural network can able to consider the most recent data at all times, and constantly adapt itself to the most recent happenings. The second level considers the adaptation of the neural network’s execution time depending on the circumstances of its use. The execution time adaptation is performed through the automatic adjustment of the amount of data considered for training the network. This is an advantageous and indispensable feature for this neural network’s integration in ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to the market negotiating players of MASCEM (Multi-Agent Simulator of Competitive Electricity Markets).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel approach to scheduling resolution by combining Autonomic Computing (AC), Multi-Agent Systems (MAS), Case-based Reasoning (CBR), and Bio-Inspired Optimization Techniques (BIT) will be described. AC has emerged as a paradigm aiming at incorporating applications with a management structure similar to the central nervous system. The main intentions are to improve resource utilization and service quality. In this paper we envisage the use of MAS paradigm for supporting dynamic and distributed scheduling in Manufacturing Systems with AC properties, in order to reduce the complexity of managing manufacturing systems and human interference. The proposed CBR based Intelligent Scheduling System was evaluated under different dynamic manufacturing scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Swarm Intelligence (SI) is a growing research field of Artificial Intelligence (AI). SI is the general term for several computational techniques which use ideas and get inspiration from the social behaviours of insects and of other animals. This paper presents hybridization and combination of different AI approaches, like Bio-Inspired Techniques (BIT), Multi-Agent systems (MAS) and Machine Learning Techniques (ML T). The resulting system is applied to the problem of jobs scheduling to machines on dynamic manufacturing environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the problem of Biological Inspired Optimization Techniques (BIT) parameterization, considering the importance of this issue in the design of BIT especially when considering real world situations, subject to external perturbations. A learning module with the objective to permit a Multi-Agent Scheduling System to automatically select a Meta-heuristic and its parameterization to use in the optimization process is proposed. For the learning process, Casebased Reasoning was used, allowing the system to learn from experience, in the resolution of similar problems. Analyzing the obtained results we conclude about the advantages of its use.