842 resultados para Hybrid genetic algorithm


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The design of a large and reliable DNA codeword library is a key problem in DNA based computing. DNA codes, namely sets of fixed length edit metric codewords over the alphabet {A, C, G, T}, satisfy certain combinatorial constraints with respect to biological and chemical restrictions of DNA strands. The primary constraints that we consider are the reverse--complement constraint and the fixed GC--content constraint, as well as the basic edit distance constraint between codewords. We focus on exploring the theory underlying DNA codes and discuss several approaches to searching for optimal DNA codes. We use Conway's lexicode algorithm and an exhaustive search algorithm to produce provably optimal DNA codes for codes with small parameter values. And a genetic algorithm is proposed to search for some sub--optimal DNA codes with relatively large parameter values, where we can consider their sizes as reasonable lower bounds of DNA codes. Furthermore, we provide tables of bounds on sizes of DNA codes with length from 1 to 9 and minimum distance from 1 to 9.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Experimental Extended X-ray Absorption Fine Structure (EXAFS) spectra carry information about the chemical structure of metal protein complexes. However, pre- dicting the structure of such complexes from EXAFS spectra is not a simple task. Currently methods such as Monte Carlo optimization or simulated annealing are used in structure refinement of EXAFS. These methods have proven somewhat successful in structure refinement but have not been successful in finding the global minima. Multiple population based algorithms, including a genetic algorithm, a restarting ge- netic algorithm, differential evolution, and particle swarm optimization, are studied for their effectiveness in structure refinement of EXAFS. The oxygen-evolving com- plex in S1 is used as a benchmark for comparing the algorithms. These algorithms were successful in finding new atomic structures that produced improved calculated EXAFS spectra over atomic structures previously found.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Feature selection plays an important role in knowledge discovery and data mining nowadays. In traditional rough set theory, feature selection using reduct - the minimal discerning set of attributes - is an important area. Nevertheless, the original definition of a reduct is restrictive, so in one of the previous research it was proposed to take into account not only the horizontal reduction of information by feature selection, but also a vertical reduction considering suitable subsets of the original set of objects. Following the work mentioned above, a new approach to generate bireducts using a multi--objective genetic algorithm was proposed. Although the genetic algorithms were used to calculate reduct in some previous works, we did not find any work where genetic algorithms were adopted to calculate bireducts. Compared to the works done before in this area, the proposed method has less randomness in generating bireducts. The genetic algorithm system estimated a quality of each bireduct by values of two objective functions as evolution progresses, so consequently a set of bireducts with optimized values of these objectives was obtained. Different fitness evaluation methods and genetic operators, such as crossover and mutation, were applied and the prediction accuracies were compared. Five datasets were used to test the proposed method and two datasets were used to perform a comparison study. Statistical analysis using the one-way ANOVA test was performed to determine the significant difference between the results. The experiment showed that the proposed method was able to reduce the number of bireducts necessary in order to receive a good prediction accuracy. Also, the influence of different genetic operators and fitness evaluation strategies on the prediction accuracy was analyzed. It was shown that the prediction accuracies of the proposed method are comparable with the best results in machine learning literature, and some of them outperformed it.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nous présentons un modèle pour l’irradiance solaire spectrale entre 200 et 400 nm. Celui-ci est une extension d’un modèle d’irradiance solaire totale basé sur la simulation de la fragmentation et l’érosion des taches qui utilise, en entrée, les positions et aires des taches observées pour chaque pas de temps d’une journée. L’émergence des taches sur la face du Soleil opposée à la Terre est simulée par une injection stochastique. Le modèle simule ensuite leur désintégration, qui produit des taches plus petites et des facules. Par la suite, l’irradiance est calculée en sommant la contribution des taches, des facules et du Soleil inactif. Les paramètres libres du modèle sont ajustés en comparant les séquences temporelles produites avec les données provenant de divers satellites s’étalant sur trois cycles d’activité. Le modèle d’irradiance spectrale, quant à lui, a été obtenu en modifiant le calcul de la contribution des taches et des facules, ainsi que celle du Soleil inactif, afin de tenir compte de leur dépendance spectrale. Le flux de la photosphère inactive est interpolé sur un spectre synthétique non magnétisé, alors que le contraste des taches est obtenu en calculant le rapport du flux provenant d’un spectre synthétique représentatif des taches et de celui provenant du spectre représentatif du Soleil inactif. Le contraste des facules est quand à lui calculé avec une procédure simple d’inversion de corps noir. Cette dernière nécessite l’utilisation d’un profil de température des facules obtenu à l’aide de modèles d’atmosphère. Les données produites avec le modèle d’irradiance spectrale sont comparées aux observations de SOLSTICE sur UARS. L’accord étant peu satisfaisant, particulièrement concernant le niveau d’irradiance minimal ainsi que l’amplitude des variations, des corrections sont appliquées sur le flux du Soleil inactif, sur le profil de température des facules, ainsi qu’à la dépendance centre-bord du contraste des facules. Enfin, un profil de température des facules est reconstruit empiriquement en maximisant l’accord avec les observations grâce à un algorithme génétique. Il est utilisé afin de reconstruire les séquences temporelles d’irradiance jusqu’en 1874 à des longueurs d’ondes d’intérêt pour la chimie et la dynamique stratosphérique.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A partir des résultats d’une enquête effectuée en 2005 sur un échantillon de 203 dirigeants publics, une typologie floue de trois profils a été dégagée en vue de concevoir un système d’affectation des dirigeants en fonction de leur style du leadership, sens du travail, et leurs préoccupations de gestion des ressources humaines. En se basant sur cette typologie floue, des techniques empruntées à l’intelligence artificielle ont été appliquées pour apprendre des règles de classification. Ces techniques sont au nombre de quatre : le réseau neuronal (Neural Network), l’algorithme génétique (Genetic Algorithm), l’arbre de décision (Decision Tree) et la théorie des ensembles approximatifs (Rough Sets). Les résultats de l’étude ainsi que ses perspectives seront présentées et discutés tout au long de cette communication.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nous étudions la gestion de centres d'appels multi-compétences, ayant plusieurs types d'appels et groupes d'agents. Un centre d'appels est un système de files d'attente très complexe, où il faut généralement utiliser un simulateur pour évaluer ses performances. Tout d'abord, nous développons un simulateur de centres d'appels basé sur la simulation d'une chaîne de Markov en temps continu (CMTC), qui est plus rapide que la simulation conventionnelle par événements discrets. À l'aide d'une méthode d'uniformisation de la CMTC, le simulateur simule la chaîne de Markov en temps discret imbriquée de la CMTC. Nous proposons des stratégies pour utiliser efficacement ce simulateur dans l'optimisation de l'affectation des agents. En particulier, nous étudions l'utilisation des variables aléatoires communes. Deuxièmement, nous optimisons les horaires des agents sur plusieurs périodes en proposant un algorithme basé sur des coupes de sous-gradients et la simulation. Ce problème est généralement trop grand pour être optimisé par la programmation en nombres entiers. Alors, nous relaxons l'intégralité des variables et nous proposons des méthodes pour arrondir les solutions. Nous présentons une recherche locale pour améliorer la solution finale. Ensuite, nous étudions l'optimisation du routage des appels aux agents. Nous proposons une nouvelle politique de routage basé sur des poids, les temps d'attente des appels, et les temps d'inoccupation des agents ou le nombre d'agents libres. Nous développons un algorithme génétique modifié pour optimiser les paramètres de routage. Au lieu d'effectuer des mutations ou des croisements, cet algorithme optimise les paramètres des lois de probabilité qui génèrent la population de solutions. Par la suite, nous développons un algorithme d'affectation des agents basé sur l'agrégation, la théorie des files d'attente et la probabilité de délai. Cet algorithme heuristique est rapide, car il n'emploie pas la simulation. La contrainte sur le niveau de service est convertie en une contrainte sur la probabilité de délai. Par après, nous proposons une variante d'un modèle de CMTC basé sur le temps d'attente du client à la tête de la file. Et finalement, nous présentons une extension d'un algorithme de coupe pour l'optimisation stochastique avec recours de l'affectation des agents dans un centre d'appels multi-compétences.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Les analyses effectuées dans le cadre de ce mémoire ont été réalisées à l'aide du module MatchIt disponible sous l’environnent d'analyse statistique R. / Statistical analyzes of this thesis were performed using the MatchIt package available in the statistical analysis environment R.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

En la actualidad, el uso de las tecnologías ha sido primordial para el avance de las sociedades, estas han permitido que personas sin conocimientos informáticos o usuarios llamados “no expertos” se interesen en su uso, razón por la cual los investigadores científicos se han visto en la necesidad de producir estudios que permitan la adaptación de sistemas, a la problemática existente dentro del ámbito informático. Una necesidad recurrente de todo usuario de un sistema es la gestión de la información, la cual se puede administrar por medio de una base de datos y lenguaje específico, como lo es el SQL (Structured Query Language), pero esto obliga al usuario sin conocimientos a acudir a un especialista para su diseño y construcción, lo cual se ve reflejado en costos y métodos complejos, entonces se plantea una pregunta ¿qué hacer cuando los proyectos son pequeñas y los recursos y procesos son limitados? Teniendo como base la investigación realizada por la universidad de Washington[39], donde sintetizan sentencias SQL a partir de ejemplos de entrada y salida, se pretende con esta memoria automatizar el proceso y aplicar una técnica diferente de aprendizaje, para lo cual utiliza una aproximación evolucionista, donde la aplicación de un algoritmo genético adaptado origina sentencias SQL válidas que responden a las condiciones establecidas por los ejemplos de entrada y salida dados por el usuario. Se obtuvo como resultado de la aproximación, una herramienta denominada EvoSQL que fue validada en este estudio. Sobre los 28 ejercicios empleados por la investigación [39], 23 de los cuales se obtuvieron resultados perfectos y 5 ejercicios sin éxito, esto representa un 82.1% de efectividad. Esta efectividad es superior en un 10.7% al establecido por la herramienta desarrollada en [39] SQLSynthesizer y 75% más alto que la herramienta siguiente más próxima Query by Output QBO[31]. El promedio obtenido en la ejecución de cada ejercicio fue de 3 minutos y 11 segundos, este tiempo es superior al establecido por SQLSynthesizer; sin embargo, en la medida un algoritmo genético supone la existencia de fases que amplían los rangos de tiempos, por lo cual el tiempo obtenido es aceptable con relación a las aplicaciones de este tipo. En conclusión y según lo anteriormente expuesto, se obtuvo una herramienta automática con una aproximación evolucionista, con buenos resultados y un proceso simple para el usuario “no experto”.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The need for reliable predictions of the solar activity cycle motivates the development of dynamo models incorporating a representation of surface processes sufficiently detailed to allow assimilation of magnetographic data. In this series of papers we present one such dynamo model, and document its behavior and properties. This first paper focuses on one of the model's key components, namely surface magnetic flux evolution. Using a genetic algorithm, we obtain best-fit parameters of the transport model by least-squares minimization of the differences between the associated synthetic synoptic magnetogram and real magnetographic data for activity cycle 21. Our fitting procedure also returns Monte Carlo-like error estimates. We show that the range of acceptable surface meridional flow profiles is in good agreement with Doppler measurements, even though the latter are not used in the fitting process. Using a synthetic database of bipolar magnetic region (BMR) emergences reproducing the statistical properties of observed emergences, we also ascertain the sensitivity of global cycle properties, such as the strength of the dipole moment and timing of polarity reversal, to distinct realizations of BMR emergence, and on this basis argue that this stochasticity represents a primary source of uncertainty for predicting solar cycle characteristics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adolescent idiopathic scoliosis (AIS) is a musculoskeletal pathology. It is a complex spinal curvature in a 3-D space that also affects the appearance of the trunk. The clinical follow-up of AIS is decisive for its management. Currently, the Cobb angle, which is measured from full spine radiography, is the most common indicator of the scoliosis progression. However, cumulative exposure to X-rays radiation increases the risk for certain cancers. Thus, a noninvasive method for the identification of the scoliosis progression from trunk shape analysis would be helpful. In this study, a statistical model is built from a set of healthy subjects using independent component analysis and genetic algorithm. Based on this model, a representation of each scoliotic trunk from a set of AIS patients is computed and the difference between two successive acquisitions is used to determine if the scoliosis has progressed or not. This study was conducted on 58 subjects comprising 28 healthy subjects and 30 AIS patients who had trunk surface acquisitions in upright standing posture. The model detects 93% of the progressive cases and 80% of the nonprogressive cases. Thus, the rate of false negatives, representing the proportion of undetected progressions, is very low, only 7%. This study shows that it is possible to perform a scoliotic patient's follow-up using 3-D trunk image analysis, which is based on a noninvasive acquisition technique.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Analog-to digital Converters (ADC) have an important impact on the overall performance of signal processing system. This research is to explore efficient techniques for the design of sigma-delta ADC,specially for multi-standard wireless tranceivers. In particular, the aim is to develop novel models and algorithms to address this problem and to implement software tools which are avle to assist the designer's decisions in the system-level exploration phase. To this end, this thesis presents a framework of techniques to design sigma-delta analog to digital converters.A2-2-2 reconfigurable sigma-delta modulator is proposed which can meet the design specifications of the three wireless communication standards namely GSM,WCDMA and WLAN. A sigma-delta modulator design tool is developed using the Graphical User Interface Development Environment (GUIDE) In MATLAB.Genetic Algorithm(GA) based search method is introduced to find the optimum value of the scaling coefficients and to maximize the dynamic range in a sigma-delta modulator.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To ensure quality of machined products at minimum machining costs and maximum machining effectiveness, it is very important to select optimum parameters when metal cutting machine tools are employed. Traditionally, the experience of the operator plays a major role in the selection of optimum metal cutting conditions. However, attaining optimum values each time by even a skilled operator is difficult. The non-linear nature of the machining process has compelled engineers to search for more effective methods to attain optimization. The design objective preceding most engineering design activities is simply to minimize the cost of production or to maximize the production efficiency. The main aim of research work reported here is to build robust optimization algorithms by exploiting ideas that nature has to offer from its backyard and using it to solve real world optimization problems in manufacturing processes.In this thesis, after conducting an exhaustive literature review, several optimization techniques used in various manufacturing processes have been identified. The selection of optimal cutting parameters, like depth of cut, feed and speed is a very important issue for every machining process. Experiments have been designed using Taguchi technique and dry turning of SS420 has been performed on Kirlosker turn master 35 lathe. Analysis using S/N and ANOVA were performed to find the optimum level and percentage of contribution of each parameter. By using S/N analysis the optimum machining parameters from the experimentation is obtained.Optimization algorithms begin with one or more design solutions supplied by the user and then iteratively check new design solutions, relative search spaces in order to achieve the true optimum solution. A mathematical model has been developed using response surface analysis for surface roughness and the model was validated using published results from literature.Methodologies in optimization such as Simulated annealing (SA), Particle Swarm Optimization (PSO), Conventional Genetic Algorithm (CGA) and Improved Genetic Algorithm (IGA) are applied to optimize machining parameters while dry turning of SS420 material. All the above algorithms were tested for their efficiency, robustness and accuracy and observe how they often outperform conventional optimization method applied to difficult real world problems. The SA, PSO, CGA and IGA codes were developed using MATLAB. For each evolutionary algorithmic method, optimum cutting conditions are provided to achieve better surface finish.The computational results using SA clearly demonstrated that the proposed solution procedure is quite capable in solving such complicated problems effectively and efficiently. Particle Swarm Optimization (PSO) is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. From the results it has been observed that PSO provides better results and also more computationally efficient.Based on the results obtained using CGA and IGA for the optimization of machining process, the proposed IGA provides better results than the conventional GA. The improved genetic algorithm incorporating a stochastic crossover technique and an artificial initial population scheme is developed to provide a faster search mechanism. Finally, a comparison among these algorithms were made for the specific example of dry turning of SS 420 material and arriving at optimum machining parameters of feed, cutting speed, depth of cut and tool nose radius for minimum surface roughness as the criterion. To summarize, the research work fills in conspicuous gaps between research prototypes and industry requirements, by simulating evolutionary procedures seen in nature that optimize its own systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microarray data analysis is one of data mining tool which is used to extract meaningful information hidden in biological data. One of the major focuses on microarray data analysis is the reconstruction of gene regulatory network that may be used to provide a broader understanding on the functioning of complex cellular systems. Since cancer is a genetic disease arising from the abnormal gene function, the identification of cancerous genes and the regulatory pathways they control will provide a better platform for understanding the tumor formation and development. The major focus of this thesis is to understand the regulation of genes responsible for the development of cancer, particularly colorectal cancer by analyzing the microarray expression data. In this thesis, four computational algorithms namely fuzzy logic algorithm, modified genetic algorithm, dynamic neural fuzzy network and Takagi Sugeno Kang-type recurrent neural fuzzy network are used to extract cancer specific gene regulatory network from plasma RNA dataset of colorectal cancer patients. Plasma RNA is highly attractive for cancer analysis since it requires a collection of small amount of blood and it can be obtained at any time in repetitive fashion allowing the analysis of disease progression and treatment response.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electric permittivity and magnetic permeability control electromagnetic wave propagation th rough materials. I n naturally occu rring materials, these are positive. Artificial materials exhi b iting negative material properties have been reported : they are referred to as metamaterials. This paper concentrates on a ring-type split-ring resonator (SRR) exhibiting negative magnetic permeability. The design and synthesis of the SRR using the genetic-algorithm approach is explained in detail. A user-friendly g raphical user i nterface (G U I ) for an SRR optim izer and estimator using MATLAB TM is also presented