924 resultados para Hutchby, Ian: Conversation analysis. Principles, practices and application
Resumo:
Bimodal dispersal probability distributions with characteristic distances differing by several orders of magnitude have been derived and favorably compared to observations by Nathan [Nature (London) 418, 409 (2002)]. For such bimodal kernels, we show that two-dimensional molecular dynamics computer simulations are unable to yield accurate front speeds. Analytically, the usual continuous-space random walks (CSRWs) are applied to two dimensions. We also introduce discrete-space random walks and use them to check the CSRW results (because of the inefficiency of the numerical simulations). The physical results reported are shown to predict front speeds high enough to possibly explain Reid's paradox of rapid tree migration. We also show that, for a time-ordered evolution equation, fronts are always slower in two dimensions than in one dimension and that this difference is important both for unimodal and for bimodal kernels
Resumo:
This article examines, in two Swiss cantons, the interdependence from a medical care point of view of various regions (health planning zones in one canton, political districts in the other). The volume and the destination of patient referrals prescribed by physicians in ambulatory practice are analyzed. The available data (on 1609 referrals) were gathered by the practitioners themselves, during a National Ambulatory Medical Care Survey type study in February-March 1981, in which 203 physicians participated. Several indicators are proposed (including an integration coefficient and an attraction coefficient for each zone); they show marked differences among the regions. This dynamic approach, based on the effective behavior of physicians, appears to be of major interest for health planning purposes (as compared with the frequent practice to use mainly parameters in relation with the availability of care services--the "supply"--numbers of professionals and/or health facilities).
Resumo:
State University Audit Report
Resumo:
State University Audit Report
Resumo:
State University Audit Report
Resumo:
State University Audit Report
Resumo:
State University Audit Report
Resumo:
State Agency Audit Report
Resumo:
Arising from either retrotransposition or genomic duplication of functional genes, pseudogenes are “genomic fossils” valuable for exploring the dynamics and evolution of genes and genomes. Pseudogene identification is an important problem in computational genomics, and is also critical for obtaining an accurate picture of a genome’s structure and function. However, no consensus computational scheme for defining and detecting pseudogenes has been developed thus far. As part of the ENCyclopedia Of DNA Elements (ENCODE) project, we have compared several distinct pseudogene annotation strategies and found that different approaches and parameters often resulted in rather distinct sets of pseudogenes. We subsequently developed a consensus approach for annotating pseudogenes (derived from protein coding genes) in the ENCODE regions, resulting in 201 pseudogenes, two-thirds of which originated from retrotransposition. A survey of orthologs for these pseudogenes in 28 vertebrate genomes showed that a significant fraction (∼80%) of the processed pseudogenes are primate-specific sequences, highlighting the increasing retrotransposition activity in primates. Analysis of sequence conservation and variation also demonstrated that most pseudogenes evolve neutrally, and processed pseudogenes appear to have lost their coding potential immediately or soon after their emergence. In order to explore the functional implication of pseudogene prevalence, we have extensively examined the transcriptional activity of the ENCODE pseudogenes. We performed systematic series of pseudogene-specific RACE analyses. These, together with complementary evidence derived from tiling microarrays and high throughput sequencing, demonstrated that at least a fifth of the 201 pseudogenes are transcribed in one or more cell lines or tissues.
Resumo:
Powdery mildew is an important disease of wheat caused by the obligate biotrophic fungus Blumeria graminis f. sp. tritici. This pathogen invades exclusively epidermal cells after penetrating directly through the cell wall. Because powdery mildew colonizes exclusively epidermal cells, it is of importance not only to identify genes which are activated, but also to monitor tissue specificity of gene activation. Acquired resistance of wheat to powdery mildew can be induced by a previous inoculation with the non-host pathogen B. graminis f. sp. hordei, the causal agent of barley powdery mildew. The establishment of the resistant state is accompanied by the activation of genes. Here we report the tissue-specific cDNA-AFLP analysis and cloning of transcripts accumulating 6 and 24 h after the resistance-inducing inoculation with B. graminis f. sp. hordei. A total of 25,000 fragments estimated to represent about 17,000 transcripts were displayed. Out of these, 141 transcripts, were found to accumulate after Bgh inoculation using microarray hybridization analysis. Forty-four accumulated predominantly in the epidermis whereas 76 transcripts accumulated mostly in mesophyll tissue.
Resumo:
State Audit Reports
Resumo:
State University Audit Report
Resumo:
Other Audit Reports - Regent Institutions
Resumo:
State Audit Reports