892 resultados para Human cell culture.
Resumo:
The mouse $\alpha$2(I) collagen gene is specifically expressed in a limited number of cell types in the body including fibroblasts and osteoblasts. We had previously shown that a promoter containing the sequences between $-$350 and +54 bp was expressed at low levels in a cell- and tissue-specific fashion in transgenic mice. Further studies suggested that the sequence between $-$315 and $-$284 bp could mediate cell- and tissue-specific expression of reporter genes in cell culture and in transgenic mice. We report here characterization of the proteins binding to this segment and propose a model for the cell-specific expression conferred by this sequence. In this study we also identified a strong enhancer for the mouse $\alpha$2(I) collagen gene located approximately 13.5 to 19.5 kb upstream of the transcriptional start site. This enhancer segment is characterized by the presence of three cell-specific hypersensitive sites and can drive high levels of cell-specific expression of a heterologous 220-bp mouse $\alpha$1(I) collagen promoter. In the course of this study, we identified a novel zinc finger transcription factor (designated murine epithelial zinc finger, mEZF) which was transiently expressed in the mesenchymal cells which give rise to the skeletal primordia and the metanephric kidney during the early stages of embryogenesis. In newborn mice, the mEZF gene is expressed at high levels in differentiated epithelial cells of the skin, oral mucosa, tongue, esophagus, stomach and colon. Chromosomal mapping suggested that the mEZF gene mapped to mouse Chromosome 4 and that the human homolog of mEZF would likely map to human Chromosome 9q31. This region of the human genome contains tumor suppressor genes for basal cell carcinomas of the skin as well as for squamous cell carcinomas of various organs. We cloned and characterized the human homolog of mEZF and mapped its chromosomal position as a first step in determining whether or not this gene plays a role in the development of these tumors. ^
Resumo:
OPN is a secreted phosphate containing protein which is expressed by osteoblasts and a variety of other cells in vivo. Data from in vitro studies has accumulated which relates OPN to cellular transformation. We hypothesize that OPN expression is associated with neoplastic disease in humans as suggested by cell culture models. The overall objective of the current study was to determine the tissue distribution of OPN in human malignancy and to determine whether or not a correlation exists between OPN serum levels and malignancy. At the inception of this project, no study had been made demonstrating the relevance of OPN expression with naturally occurring neoplastic disease in humans. To date, few studies have reported OPN distribution in human neoplasia and are limited by either the number of specimens analyzed or the technique used in analysis. In this dissertation study, OPN was purified from human milk and $\alpha$-OPN antiserum developed and characterized. Following antibody development, the distribution and prevalence of OPN in human oral squamous cell carcinoma and human prostate carcinoma was evaluated using immunohistochemical localization. OPN immunolocalization was found in a high percentage of oral epithelial dysplasia and oral squamous cell carcinoma in humans. One oral squamous cell carcinoma cells line, UMSCC-1, was found to express OPN mRNA using Northern blotting. OPN localized to a high percentage of primary prostate adenocarcinomas. OPN localized to 52% of androgen dependent cases and 100% of androgen independent cases. Androgen dependent cell lines such as LNCap and NbE showed minimal OPN mRNA expression while the androgen independent lines C4-2 and PC3 produced ample OPN mRNA. An OPN sandwich assay was developed and used to determine the serum level of OPN in normal males, patients with BPH (benign prostate hypertrophy), and patients with prostate carcinoma. No statistically significant difference was found in OPN serum levels among the three groups. However, a trend of increasing OPN in the serum was noted in patients with BPH and prostate cancer. ^
Resumo:
Relaying a signal across the plasma membrane requires functional connections between the partner molecules. Membrane microdomains or lipid rafts provide an environment in which such specific interactions can take place. The integrity of these sites is often taken for granted when signalling pathways are investigated in cell culture. However, it is well known that smooth muscle and endothelial cells undergo cytoskeletal rearrangements during monolayer culturing. Likewise affected--and with potentially important consequences for signalling events--is the organization of the plasma membrane. The expression levels of three raft markers were massively upregulated, and raft-associated 5'-nucleotidase activity increased in conventional monolayer cultures as compared with a spheroidal coculture model, shown to promote the differentiation of endothelial cells. Our data point to a shift of raft components in monolayer cultures and demonstrate potential advantages of the spheroid coculture system for investigation of raft-mediated signalling events in endothelial cells.
Resumo:
Human up-frameshift 1 (UPF1) is an ATP-dependent RNA helicase and phosphoprotein implicated in several biological processes but is best known for its key function in nonsense-mediated mRNA decay (NMD). Here we employed a combination of stable isotope labeling of amino acids in cell culture experiments to determine by quantitative proteomics UPF1 interactors. We used this approach to distinguish between RNA-mediated and protein-mediated UPF1 interactors and to determine proteins that preferentially bind the hypo- or the hyper-phosphorylated form of UPF1. Confirming and expanding previous studies, we identified the eukaryotic initiation factor 3 (eIF3) as a prominent protein-mediated interactor of UPF1. However, unlike previously reported, eIF3 binds to UPF1 independently of UPF1’s phosphorylation state. Furthermore, our data revealed many nucleus-associated RNA-binding proteins that preferentially associate with hyper-phosphorylated UPF1 in an RNase-sensitive manner, suggesting that UPF1 gets recruited to mRNA and becomes phosphorylated before being exported to the cytoplasm as part of the mRNP.
Resumo:
FUS/TLS (fused in sarcoma/translocated in liposarcoma) is a ubiquitously expressed protein of the hnRNP family, that has been discovered as fused to transcription factors in several human sarcomas and found in protein aggregates in neurons of patients with an inherited form of Amyotrophic Lateral Sclerosis [Vance C. et al., 2009]. FUS is a 53 kDa nuclear protein that contains structural domains, such as a RNA Recognition Motif (RRM) and a zinc finger motif, that give to FUS the ability to bind to both RNA and DNA sequences. It has been implicated in a variety of cellular processes, such as pre-mRNA splicing, miRNA processing, gene expression control and transcriptional regulation [Fiesel FC. and Kahle PJ., 2011]. Moreover, some evidences link FUS to genome stability control and DNA damage response: mice lacking FUS are hypersensitive to ionizing radiation (IR) and show high levels of chromosome instability and, in response to double-strand breaks, FUS is phosphorylated by the protein kinase ATM [Kuroda M. et al., 2000; Hicks GG. et al., 2000; Gardiner M. et al., 2008]. Furthermore, preliminary results of mass spectrometric identification of FUS interacting proteins in HEK293 cells, expressing a recombinant flag-tagged FUS protein, highlighted the interactions with proteins involved in DNA damage response, such as DNA-PK, XRCC-5/-6, and ERCC-6, raising the possibilities that FUS is involved in this pathway, even though its role still needs to be clarified. This study aims to investigate the biological roles of FUS in human cells and in particular the putative role in DNA damage response through the characterization of the proteomic profile of the neuroblastoma cell line SH-SY5Y upon FUS inducible depletion, by a quantitative proteomic approach. The SH-SY5Y cell line that will be used in this study expresses, in presence of tetracycline, a shRNA that targets FUS mRNA, leading to FUS protein depletion (SH-SY5Y FUS iKD cells). To quantify changes in proteins expression levels a SILAC strategy (Stable Isotope Labeling by Amino acids in Cell culture) will be conducted on SH-SY5Y FUS iKD cells and a control SH-SY5Y cell line (that expresses a mock shRNA) and the relative changes in proteins levels will be evaluated after five and seven days upon FUS depletion, by nanoliquid chromatography coupled to tandem mass spectrometry (nLC-MS/MS) and bioinformatics analysis. Preliminary experiments demonstrated that the SH-SY5Y FUS iKD cells, when subjected to genotoxic stress (high dose of IR), upon inducible depletion of FUS, showed a increased phosphorylation of gH2AX with respect to control cells, suggesting an higher activation of the DNA damage response.
Resumo:
We report the fabrication, functionalization and testing of microdevices for cell culture and cell traction force measurements in three-dimensions (3D). The devices are composed of bent cantilevers patterned with cell-adhesive spots not lying on the same plane, and thus suspending cells in 3D. The cantilevers are soft enough to undergo micrometric deflections when cells pull on them, allowing cell forces to be measured by means of optical microscopy. Since individual cantilevers are mechanically independent of each other, cell traction forces are determined directly from cantilever deflections. This proves the potential of these new devices as a tool for the quantification of cell mechanics in a system with well-defined 3D geometry and mechanical properties.
Resumo:
UNLABELLED Adenovirus dodecahedron (Dd), a nanoparticulate proteinaceous biodegradable virus-like particle (VLP), was used as a vector for delivery of an oncogene inhibitor to hepatocellular carcinoma (HCC) rat orthotopic model. Initiation factor eIF4E is an oncogene with elevated expression in human cancers. Cell-impermeant eIF4E inhibitor, cap structure analog (cap) and anti-cancer antibiotic doxorubicin (Dox) were delivered as Dd conjugates. Dd-cap and Dd-dox inhibited cancer cell culture proliferation up to 50 and 84%, respectively, while with free Dox similar results could be obtained only at a 5 times higher concentration. In animal HCC model the combination treatment of Dd-cap/Dd-dox caused 40% inhibition of tumor growth. Importantly, the level of two pro-oncogenes, eIF4E and c-myc, was significantly diminished in tumor sections of treated rats. Attachment to Dd, a virus-like particle, permitted the first demonstration of cap analog intracellular delivery and resulted in improved doxorubicin delivery leading to statistically significant inhibition of HCC tumor growth. FROM THE CLINICAL EDITOR Adenovirus dodecahedron, a nanoparticulate proteinaceous biodegradable virus-like particle was used in this study as a vector for the concomitant delivery of cap structure analog and doxorubicine to hepatocellular carcinoma in a rat model, resulting in significant inhibition of tumor growth.
Resumo:
Bacterial sepsis is a severe clinical condition, leading to severe sepsis, septic shock, and death. The complex pathophysiology of sepsis is not yet fully understood. Cytokines, released by immune cells such as macrophages, play an important role in the pathophysiology of sepsis. Kupffer cells are the largest population of macrophages in the body. Purinergic signaling, mediated by different nucleosides and nucleotides, and purinergic receptors, has been shown to have various effects on cytokine release, inflammatory processes and the immune system. In our work with in vitro experiments we studied the effect of extracellular nucleotides on the release of TNFα by primary murine Kupffer cells, and the effect of extracellular nucleotides on the phagocytosis of murine RAW 264.7 and human U-937 cell culture macrophages. Secretion of TNFα was measured using ELISA, phagocytosis of bio particles was measured using a plate reader phagocytosis assay and flow cytometry. Our experiments show, that extracellular LPS stimulate release of TNFα in murine Kupffer cells and that extracellular nucleotides inhibit this effect in a dose dependent matter. Our other experiments show phagocytosis of fluorescence labeled bio particles by both macrophage cell lines RAW 264.7 and U-937 in a dose dependent manner. The experiments could not show an effect of extracellular nucleotides on phagocytosis of cell culture macrophages.
Resumo:
The ultimate goals of periodontal therapy remain the complete regeneration of those periodontal tissues lost to the destructive inflammatory-immune response, or to trauma, with tissues that possess the same structure and function, and the re-establishment of a sustainable health-promoting biofilm from one characterized by dysbiosis. This volume of Periodontology 2000 discusses the multiple facets of a transition from therapeutic empiricism during the late 1960s, toward regenerative therapies, which is founded on a clearer understanding of the biophysiology of normal structure and function. This introductory article provides an overview on the requirements of appropriate in vitro laboratory models (e.g. cell culture), of preclinical (i.e. animal) models and of human studies for periodontal wound and bone repair. Laboratory studies may provide valuable fundamental insights into basic mechanisms involved in wound repair and regeneration but also suffer from a unidimensional and simplistic approach that does not account for the complexities of the in vivo situation, in which multiple cell types and interactions all contribute to definitive outcomes. Therefore, such laboratory studies require validatory research, employing preclinical models specifically designed to demonstrate proof-of-concept efficacy, preliminary safety and adaptation to human disease scenarios. Small animal models provide the most economic and logistically feasible preliminary approaches but the outcomes do not necessarily translate to larger animal or human models. The advantages and limitations of all periodontal-regeneration models need to be carefully considered when planning investigations to ensure that the optimal design is adopted to answer the specific research question posed. Future challenges lie in the areas of stem cell research, scaffold designs, cell delivery and choice of growth factors, along with research to ensure appropriate gingival coverage in order to prevent gingival recession during the healing phase.
Resumo:
Intensive efforts in recent years to develop and commercialize in vitro alternatives in the field of risk assessment have yielded new promising two- and three dimensional (3D) cell culture models. Nevertheless, a realistic 3D in vitro alveolar model is not available yet. Here we report on the biofabrication of the human air-blood tissue barrier analogue composed of an endothelial cell, basement membrane and epithelial cell layer by using a bioprinting technology. In contrary to the manual method, we demonstrate that this technique enables automatized and reproducible creation of thinner and more homogeneous cell layers, which is required for an optimal air-blood tissue barrier. This bioprinting platform will offer an excellent tool to engineer an advanced 3D lung model for high-throughput screening for safety assessment and drug efficacy testing.
Resumo:
The differentiation of the reproductive organs is an essential developmental process required for the proper transmission of the genetic material. Müllerian inhibiting substance (MIS) is produced by testes and is necessary for the regression of the Müllerian ducts: the anlagen of the uterus, fallopian tubes and cervix. In vitro and standard transgenic mouse studies indicate that the nuclear hormone receptor Steroidogenic factor 1 (SF-1) and the transcription factor SOX9 play an essential role in the regulation of Mis. To test this hypothesis, mutations in the endogenous SF-1 and SOX9 binding sites in the mouse Mis promoter were introduced by gene targeting in embryonic stem (ES) cells. In disagreement with cell culture and transgenic mouse studies, male mice homozygous for the mutant SF-1 binding site correctly initiated Mis transcription in the fetal testes, although at significantly reduced levels. Surprisingly, sufficient Mis was produced for complete elimination of the Müllerian duct system. However, when the SF-1 binding site mutation was combined with an Mis -null allele, the further decrease in Mis levels led to a partial retention of uterine tissue, but only at a distance from the testes. In contrast, males homozygous for the mutant SOX9 binding site did not initiate Mis transcription, resulting in pseudohermaphrodites with a uterus and oviducts. These studies suggest an essential role for SOX9 in the initiation of Mis transcription, whereas SF-1 appears to act as a quantitative regulator of Mis transcript levels perhaps for influencing non-Müllerian duct tissues. ^ The Mis type II receptor, a member of the TGF- b superfamily, is also required for the proper regression of the Müllerian ducts. Mis type II receptor-deficient human males and their murine counterparts develop as pseudohermaphrodites. A lacZ reporter cassette was introduced into the mouse Mis type II receptor gene, by homologous recombination in ES cells. Expression studies, based on b -galactosidase activity, show marked expression of the MIS type II receptor in the postnatal Sertoli cells of the testis as well as in the prenatal and postnatal granulosa cells of the ovary. Expression is also seen in the mesenchymal cells surrounding the Müllerian duct and in the longitudinal muscle layer of the uterus. ^
Resumo:
Extracellular matrix (ECM) is a component of a variety of organisms that provides both structural support and influence upon the cells it surrounds. The importance of the ECM is becoming more apparent as matrix defects are linked to human disease. In this study, the large, extracellular matrix heparan sulfate proteoglycan, perlecan (Pln) is examined in two systems. First, the role of Pln in the interaction between a blastocyst and uterine epithelial cells is investigated. In mice, blastocyst attachment and implantation occurs at approximately d 4.5 post coitus. In addition, a delayed implantation model has been used to distinguish between the response of the blastocyst to that of hatching and of becoming attachment competent. ^ The second series of experiments described in this study focuses on the process of chondrogenesis in mice. Pln, commonly expressed with other basement membrane (BM) proteins, was found to be expressed in cartilaginous tissue without other BM proteins. This unusual expression pattern led to further study and the development of an in vitro chondrogenesis assay using the mouse embryonic fibroblast cell line, C3H/10T1/2. When cultured on Pln in vitro, these cells form aggregates and express the cartilage proteins, collagen type II and aggrecan. In examining the participation of the heparan sulfate (HS) chains in this process, the proteoglycan was enzymatically digested to remove the HS chains before the initiation of 10T1/2 cell culture. After digestion, the ability of Pln to stimulate aggregate formation was greatly diminished. Thus, the HS chains participate in the cell induction process. To determine which domain of Pln might be responsible for this activity, recombinant fragments of Pin were used in the cell culture assay. Of all recombinant protein fragments tested, only the domain including the HS chains, domain 1, was able to initiate the morphological change exhibited by the 10T1/2 cells. Similar to native Pln, when HS chains were removed from domain I, chondrogenic activity was abolished. A variant of domain I carrying both HS and chondroitin sulfate (CS) chains retained activity when only HS chains were removed. When both HS and CS chains were removed, then activity was lost. ^ The ability to rapidly stimulate differentiation of 10T1/2 cells in vitro may lead to better control of chondrogenesis in vitro and in vivo, providing better understanding and manipulation of the chondrogenic process. This greater understanding may have benefits for study of cartilage and bone diseases and subsequent treatment options. (Abstract shortened by UMI.)^
Resumo:
Cell signaling by nitric oxide (NO) through soluble guanylyl cyclase (sGC) and cGMP production regulates physiological responses such as smooth muscle relaxation, neurotransmission, and cell growth and differentiation. Although the NO receptor, sGC, has been studied extensively at the protein level, information on regulation of the sGC genes remains elusive. In order to understand the molecular mechanisms involved at the level of gene expression, cDNA and genomic fragments of the murine sGCα1 subunit gene were obtained through library screenings. Using the acquired clones, the sGCα 1 gene structure was determined following primer extension, 3 ′RACE and intron/exon boundary analyses. The basal activity of several 5′-flanking regions (putative promoter regions) for both the α1 and β1 sGC subunits were determined following their transfection into mouse N1E-115 neuroblastoma and rat RENE1Δ14 uterine epithelial cells using a luciferase reporter plasmid. Using the sGC sequences, real-time RT-PCR assays were designed to measure mRNA levels of the sGC α1 and β1 genes in rat, mouse and human. Subsequent studies found that uterine sGC mRNA and protein levels decreased rapidly in response to 17β-estradiol (estrogen) in an in vivo rat model. As early as 1 hour following treatment, mRNA levels of both sGC mRNAs decreased, and reached their lowest level of expression after 3 hours. This in vivo response was completely blocked by the pure estrogen receptor antagonist, ICI 182,780, was not seen in several other tissues examined, did not occur in response to other steroid hormones, and was due to a post-transcriptional mechanism. Additional studies ex vivo and in various cell culture models suggested that the estrogen-mediated decreased sGC mRNA expression did not require signals from other tissues, but may require cell communication or paracrine factors between different cell types within the uterus. Using chemical inhibitors and molecular targeting in other related studies, it was revealed that c-Jun-N-terminal kinase (JNK) signaling was responsible for decreased sGC mRNA expression in rat PC12 and RFL-6 cells, two models previously determined to exhibit rapid decreased sGC mRNA expression in response to different stimuli. To further investigate the post-transcriptional gene regulation, the full length sGCα1 3′-untranslated region (3′UTR) was cloned from rat uterine tissue and ligated downstream of the rabbit β-globin gene and expressed as a chimeric mRNA in the rat PC12 and RFL-6 cell models. Expression studies with the chimeric mRNA showed that the sGCα 1 3′UTR was not sufficient to mediate the post-transcriptional regulation of its mRNA by JNK or cAMP signaling in PC12 and RFL-6 cells. This study has provided numerous valuable tools for future studies involving the molecular regulation of the sGC genes. Importantly, the present results identified a novel paradigm and a previously unknown signaling pathway for sGC mRNA regulation that could potentially be exploited to treat diseases such as uterine cancers, neuronal disorders, hypertension or various inflammatory conditions. ^
Resumo:
Stats (s&barbelow;ignal t&barbelow;ransducer and a&barbelow;ctivator of t&barbelow;ranscription) are latent transcription factors that translocate from the cytoplasm to nucleus. Constitutive activation of Stat3α by upstream oncoproteins and receptor tyrosine kinases has been found in many human tumors and tumor-derived cell lines and it is often correlated with the activation of ErbB-2. In order to explore the involvement of ErbB-2 in the activation of Stat3 and the mechanisms underlying this event, an erbB-2 point mutant was used as a model of a constitutively activated receptor. Phenylalanine mutations (Y-F) were made in the receptor's autophosphorylation sites and their ability to activate Stat3α was evaluated. Our results suggest that Stat3α and Janus tyrosine kinase 2 associates with ErbB-2 prior to tyrosine phosphorylation of the receptor and that full activation of Stat3α by ErbB-2 requires the participation of other non-receptor tyrosine kinases. Both Src and Jak2 kinases contribute to the activation of Stat3α while only Src binds to ErbB-2 only when the receptor is tyrosine phosphorylated. Our results also suggest that tyrosine 1139 may be important for Src SH2 domain association since a mutant lacking this tyrosine reduces the ability of the Src SH2 domain to bind to ErbB-2 and significantly decreases its ability to activate Stat3α. ^ In order to disrupt aberrant STAT3α activation which contributes to tumorigenesis, we sought small molecules which can specifically bind to the STAT3 SH2 domain, thereby abolishing its ability of being recruited into receptors, and also blocking the dimer formation required for STAT3α activation. A phosphopeptide derived from gp130 was found to have a high affinity to STAT3 SH2 domain, and we decided to use this peptide as the base for further modifications. A series of peptide based compounds were designed and tested using electrophoretic mobility shift assay and fluorescence polarization assay to evaluate their affinity to the STAT3 SH2 domain. Two promising compounds, DRIV-73C and BisPOM, were used for blocking STAT3α activity in cell culture. Either can successfully impair STAT3α activation induced by IL-6 stimulation in HepG2 cells. BisPOM proved to be the more effective in blocking STAT3α tyrosine phosphorylation in induced cells and tumor cell lines, and was the more potent in inhibiting STAT3 dependent cell growth. ^
Resumo:
DNA interstrand crosslinks (ICLs) are among the most toxic type of damage to a cell. Many ICL-inducing agents are widely used as therapeutic agents, e.g. cisplatin, psoralen. A bettor understanding of the cellular mechanism that eliminates ICLs is important for the improvement of human health. However, ICL repair is still poorly understood in mammals. Using a triplex-directed site-specific ICL model, we studied the roles of mismatch repair (MMR) proteins in ICL repair in human cells. We are also interested in using psoralen-conjugated triplex-forming oligonucleotides (TFOs) to direct ICLs to a specific site in targeted DNA and in the mammalian genomes. ^ MSH2 protein is the common subunit of two MMR recognition complexes, and MutSα and MutSβ. We showed that MSH2 deficiency renders human cell hypersensitive to psoralen ICLs. MMR recognition complexes bind specifically to triplex-directed psoralen ICLs in vitro. Together with the fact that psoralen ICL-induced repair synthesis is dramatically decreased in MSH2 deficient cell extracts, we demonstrated that MSH2 function is critical for the recognition and processing of psoralen ICLs in human cells. Interestingly, lack of MSH2 does not reduce the level of psoralen ICL-induced mutagenesis in human cells, suggesting that MSH2 does not contribute to error-generating repair of psoralen ICLs, and therefore, may represent a novel error-free mechanism for repairing ICLs. We also studied the role of MLH1, anther key protein in MMR, in the processing of psoralen ICLs. MLH1-deficient human cells are more resistant to psoralen plus UVA treatment. Importantly, MLH1 function is not required for the mutagenic repair of psoralen ICLs, suggesting that it is not involved in the error-generating repair of this type of DNA damage in human cells. ^ These are the first data indicating mismatch repair proteins may participate in a relatively error-free mechanism for processing psoralen ICL in human cells. Enhancement of MMR protein function relative to nucleotide excision repair proteins may reduce the mutagenesis caused by DNA ICLs in humans. ^ In order to specifically target ICLs to mammalian genes, we identified novel TFO target sequences in mouse and human genomes. Using this information, many critical mammalian genes can now be targeted by TFOs.^