999 resultados para Human Autopsy
Resumo:
An immunoperoxidase technique was used to examine CD28, CD152, CD80 and CD86 positive cells in gingival biopsies from 21 healthy/gingivitis and 26 periodontitis subjects. The samples were placed into 3 groups (small, intermediate, large) according to the size of the infiltrate. The percent CD28+ T cells in the connective tissue infiltrates was highly variable with no differences between the healthy/gingivitis and periodontitis groups. While there was an increase in positive cells in intermediate infiltrates from both healthy/gingivitis (28.5%) and periodontitis (21.4%) patients compared with small infiltrates (8.6% and 11.8%, respectively), this was not significant, although the percent CD28+ T cells did increase significantly in tissues with increased proportions of B cells relative to T cells (p=0.047). A mean of less than 5% infiltrating T cells were CD152+ which was significantly lower than the mean percent CD28+ T cells in intermediate healthy/gingivitis lesions (p=0.021). The mean percent CD80+ and CD86+ B cells and macrophages was 1–7% and 8–16%, respectively, the difference being significant in intermediate healthy/gingivitis tissues (p=0.012). Analysis of these cells in relation to increasing numbers of B cells in proportion to T cells and also to macrophages, suggested that CD80 was expressed predominantly by macrophages while CD86 was expressed by both macrophages and B cells. Few endothelial cells expressed CD80 or CD86. Keratinocytes displayed cytoplasmic staining of CD80 rather than CD86 although the numbers of positive specimens in the healthy/gingivitis and periodontitis groups reduced with increasing inflammation. In conclusion, percentages of CD28, CD152, CD80 and CD86 did not reflect differences in clinical status. However, the percent CD28+ T cells increased with increasing size of infiltrate and with increasing proportions of B cells suggesting increased T/B cell interactions with increasing inflammation. The percent CD152+ cells remained low indicating that CD152 may not be involved in negative regulation of T cells in periodontal disease. CD80 and CD86 have been reported to promote Th1 and Th2 responses, respectively, and the higher percent CD86+ cells suggests a predominance of Th2 responses in both healthy/gingivitis and periodontitis tissues. Nevertheless, other factors including cytokines themselves and chemokines which modulate T cell cytokine profiles must be monitored to determine the nature of Th1/Th2 responses in periodontal disease.
Resumo:
Purpose: The objective of the present in situ study was to evaluate the influence of dental plaque on human enamel erosion. Materials and Methods: Thirteen volunteers wore acrylic palatal devices with four enamel specimens that were prepared from freshly extracted impacted human third permanent molars (4 x 4 mm), randomly selected and distributed into two vertical rows, corresponding to the following groups: GI, erosion of dental plaque-free samples, and GII, erosion of dental plaque-covered samples. For the formation of dental plaque, the specimens were placed 1 mm below the level of the appliance and covered with a plastic mesh to allow the accumulation of dental plaque. The palatal device was continuously worn by the volunteers for 14 consecutive days and then immersed in a soft drink (Coca-Cola (R), 150 ml) for 5 min, three times a day. Half of the surfaces of specimens were coated with nail varnish for profilometry tests. The study variables included the depth of enamel surface wear (profilometer, vertical ranges in pm) and the percentage of superficial microhardness change (%SMHC). Data were analysed using the t test (P < 0.05). Results: The %SMHC and depth of enamel surface wear were significantly higher for GI (-87.82% +/- 3.66 and 4.70 mu m +/- 1.65) than for GII (-13.79% +/- 4.22 and 0.14 mu m +/- 0.03). Conclusions: It was concluded that the dental plaque formed in situ was able to protect the enamel surface against erosion by a cola soft drink, thus reducing the depth of enamel surface wear and the %SMHC.
Resumo:
Objective This study compared the clinical and radiographic effectiveness of mineral trioxide aggregate (MTA) and Portland cement (PC) as pulp dressing agents in carious primary teeth. Methodology Thirty carious primary mandibular molars of children aged 5-9 years old were randomly assigned to MTA or PC groups, and treated by a conventional pulpotomy technique. The teeth were restored with resin modified glass ionomer cement. Clinical and radiographic successes and failures were recorded at 6, 12, 18 and 24-month follow-up. Results All pulpotomised teeth were clinically and radiographically successful at all follow-up appointments. Six out of 15 teeth in the PC group and five out of 14 teeth in the MTA group exfoliated throughout the follow-up period. No statistically significant difference regarding dentine bridge formation was found between both groups throughout the follow-up period. As far as pulp canal obliteration is concerned, a statistically significant difference was detected at 6-month follow-up (p < 0.05), since the beginning of mineralised material deposition could be radiographically detected in 100% and 57.14% of the teeth treated with PC and MTA, respectively. Conclusions PC may serve as an effective and less expensive MTA substitute in primary molar pulpotomies. Further studies and longer follow-up assessments are needed.
Resumo:
This study evaluated, by cross-sectional hardness (CSH), enamel maturation at different depths in sound human teeth at different posteruptive ages (12 per age group): unerupted (molars; control), 2-3 years (premolars), 4-10 years (premolars) and >10 years (molars). Cross-sectional Knoop hardness was measured at 10, 30, 50, 70, 90, 110, 220 and 330 mu m depth from the surface. The data were subjected to two-way ANOVA followed by Bonferroni`s pairwise tests (alpha = 0.05). The CSH significantly increased with posteruptive age, indicating that the time of exposure in the oral cavity might result in deep enamel maturation. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Background: Periodontal wound healing and regeneration require that new matrix be synthesized, creating an environment into which cells can migrate. One agent which has been described as promoting periodontal regeneration is an enamel matrix protein derivative (EMD). Since no specific growth factors have been identified in EMD preparations, it is postulated that EMD acts as a matrix enhancement factor. This study was designed to investigate the effect of EMD in vitro on matrix synthesis by cultured periodontal fibroblasts. Methods: The matrix response of the cells was evaluated by determination of the total proteoglycan synthesis, glycosaminoglycan profile, and hyaluronan synthesis by the uptake of radiolabeled precursors. The response of the individual proteoglycans, versican, decorin, and biglycan were examined at the mRNA level by Northern blot analysis. Hyaluronan synthesis was probed by identifying the isotypes of hyaluronan synthase (HAS) expressed in periodontal fibroblasts as HAS-2 and HAS-3 and the effect of EMD on the levels of mRNA for each enzyme was monitored by reverse transcription polymerase chain reaction (RTPCR). Comparisons were made between gingival fibroblast (GF) cells and periodontal ligament (PDLF) cells. Results: EMD was found to significantly affect the synthesis of the mRNAs for the matrix proteoglycans versican, biglycan, and decorin, producing a response similar to, but potentially greater than, mitogenic cytokines. EMD also stimulated hyaluronan synthesis in both GF and PDLF cells. Although mRNA for HAS-2 was elevated in GF after exposure to EMD, the PDLF did not show a similar response. Therefore, the point at which the stimulation of hyaluronan becomes effective may not be at the level of stimulation of the mRNA for hyaluronan synthase, but, rather, at a later point in the pathway of regulation of hyaluronan synthesis. In all cases, GF cells appeared to be more responsive to EMD than PDLF cells in vitro. Conclusions: EMD has the potential to significantly modulate matrix synthesis in a manner consistent with early regenerative events.
Resumo:
Cell-surface proteoglycans have been known to be involved in many functions including interactions with components of the extracellular microenvironment, and act as co-receptors which bind and modify the action of various growth factors and cytokines. The purpose of this study was to determine the regulation by growth factors and cytokines on cell-surface proteoglycan gene expression in cultured human periodontal ligament (PDL) cells. Subconfluent, quiescent PDL cells were treated with various concentrations of serum, bFGF, PDGF-BB, TGF-beta1, IL-1 beta, and IFN-gamma. RT-PCR technique was used, complemented with Northern blot for syndecan-1, to examine the effects of these agents on the mRNA expression of five cell-surface proteoglycans (syndecan-1, syndecan-2, syndecan-4, glypican and betaglycan). Syndecan-1 mRNA levels increased in response to serum, bFGF and PDGF-BB, but decreased in response to TGF-beta1, IL-1 beta and IFN-gamma. In contrast, syndecan-2 mRNA levels were upregulated by TCF-beta1 and IL-1 beta stimulation, but remained unchanged with the other agents. Betaglycan gene expression decreased in response to serum, but was upregulated by TCF-beta1 and unchanged by the other stimulants. Additionally, syndecan-4 and glypican were not significantly altered in response to the regulator molecules studied, with the exception that glypican is decreased in response to IFN-gamma. These data demonstrate that the gene expression of the five cell-surface proteoglycans studied is differentially regulated in PDL cells lending support to the nation of distinct functions for these cell-surface proteoglycans. (C) 2001 Wiley-Liss, inc.
Resumo:
Both tissue plasminogen activator (t-PA) and plasminogen activator inhibitor 2 (PAI-2) are important proteolysis factors present in inflamed human periodontal tissues. The aim of the present study was to investigate the effect of lipopolysaccharide (LPS) on the synthesis: of t-PA and PAI-2 by human gingival fibroblasts (HGF). LPS from different periodontal pathogens including Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum were extracted by the hot phenol water method. The levels of t-PA and PAI-2 secreted into the cell culture media were measured by enzyme-linked immunosorbent assays (ELISA). The mRNA for t-PA and PAI-2 were measured by RT-PCR. The results showed t-PA synthesis was increased in response to all types of LPS studied and PAI-2 level was increased by LPS from A. actinomycetemcomitans and F. nucleatum, but not P. gingivalis. When comparing the effects of LPS from non-periodontal bacteria (Escherichia coli and Salmonella enteritidis) with the LPS from periodontal pathogens, we found that the ratio of t-PA to PAI-2 was greater following exposure of the cells to LPS from periodontal pathogens. The highest ratio of t-PA to PAI-2 was found in those cells exposed to LPS from P. gingivalis. These results indicate that LPS derived from periodontal pathogens may cause unbalanced regulation of plasminogen activator and plasminogen activator inhibitor by HGF and such an effect may, in part, contribute to the destruction of periodontal connective tissue through dysregulated pericellular proteolysis.
Resumo:
Background: Fibroblasts are considered important cells in periodontitis. When challenged by different agents, they respond through the release of cytokines that participate in the inflammatory process. The aim of this study is to evaluate and compare the expression and production of macrophage inflammatory protein (MIP)-1 alpha, stromal-derived factor (SDF)-1, and interleukin (IL)-6 by human cultured periodontal ligament and gingival fibroblasts challenged with lipopolysaccharide (LPS) from Porphyromonas gingivalis. Methods: Fibroblasts were cultured from biopsies of gingival tissue and periodontal ligament of the same donors and used on the fourth passage. After confluence in 24-well plates, the culture medium alone (control) or with 0.1 to 10 mu g/ml of LPS from P. gingivalis was added to the wells, and after 1, 6, and 24 hours, the supernatant and the cells were collected and analyzed by enzyme-linked immunosorbent assay and real-time polymerase chain reaction, respectively. Results: MIP-1 alpha, SDF-1, and IL-6 protein production was significantly greater in gingival fibroblasts compared to periodontal ligament fibroblasts. IL-6 was upregulated in a time-dependent manner, mainly in gingival fibroblasts (P<0.05), which secreted more MIP-1 alpha in the lowest concentration of LPS used (0.1 mu g/ml). In contrast, a basal production of SDF-1 that was inhibited with the increase of LPS concentration was detected, especially after 24 hours (P<0.05). Conclusion: The distinct ability of the gingival and periodontal ligament fibroblasts to secrete MIP-1 alpha, SDF-1, and IL-6 emphasizes that these cells may differently contribute to the balance of cytokines in the LPS-challenged periodontium. J Periodontol 2010;81:310-317.
Resumo:
Mast cells are important effector cells of the immune system. We describe a rapid and inexpensive microassay to determine histamine release from human gingival mast cells. The assay is based on the coupling of histamine with o-phthalaldehyde (OPT) at a highly alkaline pH to form a fluorescent product. Using this assay with a sample volume of 10 mul/well in a 384 black well microplate, the histamine detection limit was 0.031 mug/ml. The human mast cell line (HMC-1) and fresh mast cells isolated from human gingival tissue (n = 10) were stimulated with substance P, anti-IgE or calcium ionophore A23187, Calcium ionophore significantly increased histamine release from HMC-1 cells and gingival mast cells (p < 0.05). This microassay will facilitate the study of mast cell histamine release in diseased oral mucosa.
Resumo:
The effects of laser phototherapy on the release of growth factors by human gingival fibroblasts were studied in vitro. Cells from a primary culture were irradiated twice (6 h interval), with continuous diode laser [gallium-aluminum-arsenium (GaAlAs), 780 nm, or indium-gallium-aluminum-phosphide (InGaAlP),_660 nm] in punctual and contact mode, 40 mW, spot size 0.042 cm(2), 3 J/cm(2) and 5 J/cm(2) (3 s and 5 s, respectively). Positive [10% fetal bovine serum (FBS)] and negative (1%FBS) controls were not irradiated. Production of keratinocyte growth factor (KGF) and basic fibroblast growth factor (bFGF) was quantified by enzyme-linked immunosorbent assay (ELISA). The data were statistically compared by analysis of variance (ANOVA) followed by Tukey`s test (P a parts per thousand currency signaEuro parts per thousand 0.05). The characterization of the cell line indicated a mesenchymal nature. KGF release was similar in all groups, while that of bFGF was significantly greater (1.49-times) in groups treated with infra-red laser. It was concluded that increased production of bFGF could be one of the mechanisms by which infra-red laser stimulates wound healing.
Resumo:
Objectives. To better comprehend the role of CHX in the preservation of resin-dentin bonds, this study investigated the substantivity of CHX to human dentin. Material and methods. Dentin disks (n = 45) were obtained from the mid-coronal portion of human third molars. One-third of dentin disks were kept mineralized (MD), while the other two-thirds had one of the surfaces partially demineralized with 37% phosphoric acid for 15 s (PDD) or they were totally demineralized with 10% phosphoric acid (TDD). Disks of hydroxyapatite (HA) were also prepared. Specimens were treated with: (1) 10 mu L of distilled water (controls), (2) 10 mu L of 0.2% chlorhexidine diacetate (0.2% CHX) or (3) 10 mu L of 2% chlorhexidine diacetate (2% CHX). Then, they were incubated in 1 mL of PBS (pH 7.4, 37 degrees C). Substantivity was evaluated as a function of the CHX-applied dose after: 0.5 h, 1 h, 3 h, 6 h, 24 h, 168 h (1 week), 672 h (4 weeks) and 1344 h (8 weeks) of incubation. CHX concentration in eluates was spectrophotometrically analyzed at 260 nm. Results. Significant amounts of CHX remained retained in dentin substrates (MD, PPD or TDD), independent on the CHX-applied dose or time of incubation (p < 0.05). High amounts of retained CHX onto HA were observed only for specimens treated with the highest concentration of CHX (2%) (p < 0.05). Conclusion. The outstanding substantivity of CHX to dentin and its reported effect on the inhibition of dentinal proteases may explain why CHX can prolong the durability of resin-dentin bonds. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
This study investigated the response of human alveolar bone-derived cells to a novel poly(vinylidene fluoride-trifluoroethylene)/barium titanate (P(VDF-TrFE)/BT) membrane. Osteoblastic cells were cultured in osteogenic conditions either on P(VDF-TrFE)/BT or polytetrafluoroethylene (PTFE) for up to 14 days. At 7 and 14 days, the mRNA expression of Runt-related transcription factor 2 (RUNX2), Type I collagen (COL I), Osteopontin (OPN), Alkaline phosphatase (ALP), Bone sialoprotein (BSP), and Osteocalcin (OC), key markers of the osteoblastic phenotype, and of Bcl2-associated X protein (Bax), B-cell CLL/lymphoma 2 (Bcl-2), and Survivin (SUR), associated with the control of the apoptotic cell death, was assayed by real-time PCR. In situ ALP activity was qualitatively evaluated by means of Fast red staining. Surface characterization was also qualitatively and quantitatively assayed in terms of topography, roughness, and wettability. Cells grown on P(VDF-TrFE)/BT exhibited a significantly higher mRNA expression for all markers compared to the ones on PTFE, except for Bcl-2, which was not detected for both groups. Additionally, Fast red staining was noticeably stronger in cultures on P(VDF-TrFE)/BT at 7 and 14 days. At micron-and submicron scale, SEM images and roughness analysis revealed that PTFE and P(VDF-TrFE)/BT exhibited a smooth topography and a similar roughness, respectively. PTFE membrane displayed higher contact angles compared with P(VDF-TrFE)/BT, as indicated by wettability assay. The novel P(VDF-TrFE)/BT membrane supports the acquisition of the osteoblastic phenotype in vitro, while up-regulating the expression of apoptotic markers. Further in vivo experiments should be carried out to confirm the capacity of P(VDF-TrFE)/BT membrane in promoting bone formation in guided bone regeneration.
Resumo:
Antibody isotypic responses (IgE, IgA, IgG1, IgG2, IgG3 and IgG4) to Schistosoma japonicum antigens-adult worm (AWA), soluble egg (SEA) and the recombinant proteins TEG (22.6-kDa tegumental antigen, Sj22) and PMY (paramyosin, Sj97)-were measured (in 1998) in a cohort of 179 Chinese subjects 2 years post-treatment. Subjects in the highest intensity re-infection group (> 100 eggs per gram faeces) had significantly higher levels of IgG1 and IgG4 against AWA. Analysis of IgG4/IgE ratios for AWA and SEA linked IgG4 excess to re-infection and IgE excess to non-re-infection. Two years after chemotherapeutic cure, 29 subjects, who were re-infected or never infected but highly water-exposed, were classified as epidemiologically susceptible (n = 15) or epidemiologically insusceptible to infection (n = 14). IgG4 levels against native antigens (AWA and SEA) were higher in susceptibles and IgE levels were higher in insusceptibles but antibody responses to the recombinant proteins (PMY and TEG) showed no clear pattern or difference between susceptibility groups. These and earlier findings provide evidence that immunity develops against schistosomiasis japonica in China and that susceptibility/resistance correlates with antibody isotypes against native schistosome antigens.
Resumo:
The mm of this work was to evaluate the biocompatibility of poly(vinylidene fluoride-trifluoroethylene)/barium titanate (P(VDF-TrFE)/BT) membrane to be used in guided tissue regeneration (GTR) Fibroblasts from human periodontal ligament (hPDLF) and keratinocytes (SCC9) were plated on P(VDF-TrFE)/BT and polytetrafluorethylene membranes at a cell density of 20.000 cells well(-1) and Cultured for up to 21 days Cell morphology, adhesion and proliferation were evaluated in hPDLF and keratinocytes, while total protein content and alkaline phosphatase (ALP) activity were assayed only for hPDLF Using a higher cell density. real-time polymerase chain reaction (PCR) was performed to assess the expression of typical genes of hPDLF, such as periostin, PDLs17, S100A4 and fibromodulin, and key phenotypic markers of keratinocytes, including involucrin, keratins 1. 10 and 14 Expression of the apoptotic genes bax, bcl-2 and Survivin was evaluated for both cultures hPDLF adhered and spread more oil P(VDF-TrFE)/BT, whereas keratinocytes showed a round shape on both membranes. hPDLF adhesion was greater oil P(VDF-TrFE)/BT at 2 and 4 h, while keratinocyte adhesion was similar for both membranes. Whereas proliferation was significantly higher for hPDLF on P(VDF-TrFE)/BT at days 1 and 7. no signs of keratinocyte proliferation could be noticed for both membranes Total protein content was greater on P(VDF-TrFE)/BT at 7, 14 and 21 days, and higher levels of ALP activity were observed oil P(VDF-TrFE)/BT at 21 days. Real-time PCR revealed higher expression of phenotypic markers of hPDLF and keratinocytes as well as greater expression of apoptotic genes in cultures grown on P(VDF-TrFE)/BT. These results indicate that, by favoring hPDLF adhesion. spreading. proliferation and typical mRNA expression, P(VDF-TrFE)/BT membrane should be considered an advantageous alternative for GTR (C) 2009 Acta Materialia Inc Published by Elsevier Ltd All rights reserved
Resumo:
Study Design. Osteoblastic cells derived from vertebral lamina and iliac crest were isolated and cultured under the same conditions (osteogenic medium, pH, temperature, and CO(2) levels). Objective. To compare proliferation and expression of osteoblastic phenotype of cells derived from vertebral lamina and iliac grafting. Summary of Background Data. Many factors play a role in the success of bone graft in spinal fusion including osteoblastic cell population. Two common sources of graft are vertebral lamina and iliac crest, however, differences in proliferation and osteoblastic phenotype expression between cells from these sites have not been investigated. Methods. Cells obtained from cancellous bone of both vertebral lamina and iliac crest were cultured and proliferation was evaluated by direct cell counting and viability detected by Trypan blue. Alkaline phosphatase (ALP) activity was evaluated by thymolphthalein release from thymolphthalein monophosphate and matrix mineralization by staining with alizarin red S. Gene expression of ALP, osteocalcin, runt-related transcription factor 2, Msh homeobox 2, bone morphogenetic protein 7, intercellular adhesion molecule 1 precursor, osteoprotegerin, and receptor activator of NF-kB ligand was analyzed by real-time PCR. All comparisons were donor-matched. Results. Proliferation was greater at days 7 and 10 in cells from vertebral lamina compared with ones from iliac crest without difference in cell viability. ALP activity was higher in cells from vertebral lamina compared with cells from iliac crest at days 7 and 10. At 21 days, mineralized matrix was higher in cells derived from vertebral lamina than from iliac crest. At day 7, gene expression of ALP, osteocalcin, runt-related transcription factor 2, Msh homeobox 2, bone morphogenetic protein 7, intercellular adhesion molecule 1 precursor, receptor activator of NF-kB ligand, and osteoprotegerin was higher in cells derived from vertebral lamina compared with iliac crest. Conclusion. Cell proliferation and osteoblastic phenotype development in cells derived from cancellous bone were more exuberant in cultures of vertebral lamina than of iliac crest.