858 resultados para Hormonal Regulation of diabetes
Resumo:
The river catchments of south Yorkshire support a very high density of wool processing industries. Dieldrin was once used as a moth proofing agent, as a sheep dip, and as a pesticide to protect wool fleeces during storage and transport, all of which caused pollution of these catchments due to textile processing. Weekly sampling of four of these rivers revealed two classes of dieldrin contamination: the Aire and Calder (the rivers which support very high concentrations of wool processing industries) had higher concentrations (averaging ~3 ng/l) than the Don and Trent (~1 ng/l). The average flux of dieldrin from these rivers into the Humber estuary was 9.8 g/day, with the Aire (of which the Calder is a tributary) and the Trent contributing almost equally, with a smaller contribution from the Don. The Trent has the highest average flow, explaining its large contribution to dieldrin flux. Less detailed sampling of rivers from the north Humber catchment which drain predominantly rural areas had dieldrin concentrations similar to the heavily industrialized southern catchment rivers. This suggests that dieldrin from agronomic and domestic usage may be more persistent than the pollution caused by textile processing industries. Evidence is presented to suggest that the principle dieldrin sources to the Humber catchments are sewage treatment plants, and that the dieldrin sources are in rapid equilibrium with the water column. (C) 2000 Elsevier Science B.V.
Resumo:
The unfolded protein response (UPR) is a homeostatic mechanism to maintain endoplasmic reticulum (ER) function. The UPR is activated by various physiological conditions as well as in disease states, such as cancer. As androgens regulate secretion and development of the normal prostate and drive prostate cancer (PCa) growth, they may affect UPR pathways. Here, we show that the canonical UPR pathways are directly and divergently regulated by androgens in PCa cells, through the androgen receptor (AR), which is critical for PCa survival. AR bound to gene regulatory sites and activated the IRE1α branch, but simultaneously inhibited PERK signaling. Inhibition of the IRE1α arm profoundly reduced PCa cell growth in vitro as well as tumor formation in preclinical models of PCa in vivo. Consistently, AR and UPR gene expression were correlated in human PCa, and spliced XBP-1 expression was significantly upregulated in cancer compared with normal prostate. These data establish a genetic switch orchestrated by AR that divergently regulates the UPR pathways and suggest that targeting IRE1α signaling may have therapeutic utility in PCa.
Resumo:
Membrane type-1 matrix metalloproteinase (MT1-MMP) is a zinc-binding endopeptidase, which plays a crucial role in tumour growth, invasion and metastasis. We have shown previously that MT1-MMP has higher expression levels in the human urothelial cell carcinoma (UCC) tissue. We show here that siRNA against MT1-MMP blocks invasion in UCC cell lines. Invasion is also blocked by broad-spectrum protease and MMP inhibitors including tissue inhibitor of metalloproteinase-1 and -2. Membrane type-1-MMP can also regulate transcription. We have used expression arrays to identify genes that are differentially transcribed when siRNA is used to suppress MT1-MMP expression. Upon MT1-MMP knockdown, Dickkopf-3 (DKK3) expression was highly upregulated. The stability of DKK3 mRNA was unaffected under these conditions, suggesting transcriptional regulation of DKK3 by MT1-MMP. Dickkopf-3 has been previously shown to inhibit invasion. We confirm that the overexpression of DKK3 leads to decreased invasive potential as well as delayed wound healing. We show for the first time that the effects of MT1-MMP on cell invasion are mediated in part through changes in DKK3 gene transcription.
Resumo:
Homotypic fusion between early endosomes can be reconstituted in vitro. By using wortmannin and LY294002, inhibitors of phosphatidylinositol (Pl) 3-kinase, a requirement for this activity has been established in order for fusion to proceed efficiently. It has been shown that Pl 3-kinase activity is required downstream of rab5 activation, although a large excess of activated rab5 can overcome wortmannin inhibition. A series of experiments have also been performed which indicate a role for early endosomal autoantigen 1 (EEA1) in determining fusion efficiency. EEA1 dissociates from membranes following wortmannin treatment. It is proposed that the requirement of endosome fusion for Pl 3-kinase activity is to promote the association of EEA1 with endosomes.
Resumo:
Deoxyuridine triphosphate nucleotidohydrolase (dUTPase) catalyzes the hydrolysis of dUTP to dUMP and PPi. Although dUTP is a normal intermediate in DNA synthesis, its accumulation and misincorporation into DNA is lethal. Importantly, uracil misincorporation is a mechanism of cytotoxicity induced by fluoropyrimidine chemotherapeutic agents including 5-fluorouracil (5-FU) and elevated expression of dUTPase is negatively correlated with clinical response to 5-FU-therapy. In this study we performed the first functional characterization of the dUTPase promoter and demonstrate a role for E2F-1 and Sp1 in driving dUTPase expression. We establish a direct role for both mutant and wild-type forms of p53 in modulating dUTPase promoter activity. Treatment of HCT116 p53(+/+) cells with the DNA-damaging agent oxaliplatin induced a p53-dependent transcriptional downregulation of dUTPase not observed in the isogenic null cell line. Oxaliplatin treatment induced enrichment of p53 at the dUTPase promoter with a concomitant reduction in Sp1. The suppression of dUTPase by oxaliplatin promoted increased levels of dUTP that was enhanced by subsequent addition of fluoropyrimidines. The novel observation that oxaliplatin downregulates dUTPase expression may provide a mechanistic basis contributing to the synergy observed between 5-FU and oxaliplatin in the clinic. Furthermore, these studies provide the first evidence of a direct transcriptional link between the essential enzyme dUTPase and the tumor suppressor p53.
Resumo:
Gingival fibroblasts constitutively express pattern recognition molecules including the Toll-like receptors (TLRs) and produce various cytokines following interaction with bacterial ligands including LPS. Hence gingival fibroblasts are thought to play an important role in the pathogenesis of chronic inflammatory periodontal disease.
Objectives: The aim of this study was to investigate the regulation of expression of TLRs and CD-14 mRNA by gingival fibroblasts, and subsequently the responsiveness of these cells to bacterial stimulation Methods: Gingival fibroblasts were stimulated with IL-1ß (10ng/ml), IFN-g (1000IU/ml), P. gingivalis LPS (1µg/ml), E. coli LPS (1µg/ml) or P. gingivalis sonicate (10µg/ml) for 6 and 24 hr. TLR2, TLR4 and CD14 mRNA expression was subsequently determined by Q-PCR utilising Taqman chemistry. The effects of each factor on mRNA expression was analysed by ANOVA. Cells were pre-incubated with IFN-g (1000IU/ml) for 48hr followed by stimulation with E. coli LPS over the concentration range 0 - 10.0 µg/ml for a further 48 hr. IL-8 production by fibroblasts was subsequently determined by ELISA. Results: After 24 hr IFN-g induced a statistically significant increase in TLR2, TLR4 and CD14 mRNA expression. In contrast, IL-1ß, P. gingivalis LPS, E. coli LPS and P. gingivalis sonicate had no significant effect on mRNA expression at either timepoint. Following pre-stimulation with IFN-g, E. coli LPS increased IL-8 production by gingival fibroblasts in a concentration-dependent manner. Conclusion: IFN-g stimulates mRNA expression levels of TLR2, TLR4 and CD14 in gingival fibroblasts, which may subsequently lead to an increased responsiveness of fibroblasts to bacterial stimulation.
Resumo:
The basis of quantitative regulation of gene expression is still poorly understood. In Arabidopsis thaliana, quantitative variation in expression of FLOWERING LOCUS C (FLC) influences the timing of flowering. In ambient temperatures, FLC expression is quantitatively modulated by a chromatin silencing mechanism involving alternative polyadenylation of antisense transcripts. Investigation of this mechanism unexpectedly showed that RNA polymerase II (Pol II) occupancy changes at FLC did not reflect RNA fold changes. Mathematical modeling of these transcriptional dynamics predicted a tight coordination of transcriptional initiation and elongation. This prediction was validated by detailed measurements of total and chromatin-bound FLC intronic RNA, a methodology appropriate for analyzing elongation rate changes in a range of organisms. Transcription initiation was found to vary ∼ 25-fold with elongation rate varying ∼ 8- to 12-fold. Premature sense transcript termination contributed very little to expression differences. This quantitative variation in transcription was coincident with variation in H3K36me3 and H3K4me2 over the FLC gene body. We propose different chromatin states coordinately influence transcriptional initiation and elongation rates and that this coordination is likely to be a general feature of quantitative gene regulation in a chromatin context.
Resumo:
Death effector domains (DEDs) are protein-protein interaction domains initially identified in proteins such as FADD, FLIP and caspase-8 involved in regulating apoptosis. Subsequently, these proteins have been shown to have important roles in regulating other forms of cell death, including necroptosis, and in regulating other important cellular processes, including autophagy and inflammation. Moreover, these proteins also have prominent roles in innate and adaptive immunity and during embryonic development. In this article, we review the various roles of DED-containing proteins and discuss recent developments in our understanding of DED complex formation and regulation. We also briefly discuss opportunities to therapeutically target DED complex formation in diseases such as cancer.
Resumo:
Type 1 diabetes (T1DM) is associated with increased risk of macrovascular complications. We examined longitudinal associations of serum conventional lipids and nuclear magnetic resonance (NMR)-determined lipoprotein subclasses with carotid intima-media thickness (IMT) in adults with T1DM (n=455) enrolled in the Diabetes Control and Complications Trial (DCCT). Data on serum lipids and lipoproteins were collected at DCCT baseline (1983-89) and were correlated with common and internal carotid IMT determined by ultrasonography during the observational follow-up of the DCCT, the Epidemiology of Diabetes Interventions and Complications (EDIC) study, at EDIC 'Year 1' (199-1996) and EDIC 'Year 6' (1998-2000). This article contains data on the associations of DCCT baseline lipoprotein profiles (NMR-based VLDL & chylomicrons, IDL/LDL and HDL subclasses and 'conventional' total, LDL-, HDL-, non-HDL-cholesterol and triglycerides) with carotid IMT at EDIC Years 1 and 6, stratified by gender. The data are supplemental to our original research article describing detailed associations of DCCT baseline lipids and lipoprotein profiles with EDIC Year 12 carotid IMT (Basu et al. in press) [1].