931 resultados para Homeostatic proliferation
Resumo:
Objectives/Introdution: Ki-67 protein has been used as an indicator of proliferation activity in tumor cells. In gastric cancer the prognostic value has not been fully understood. This study was designed to assess the biologic significance of Ki-67 proliferation index (PI) in gastric cancer. Material/Methods: Seventy-two patients with gastric cancer were evaluated. These patients underwent gastric resection, and the tumor tissue was stained immunohistochemically. Ki-67 PI was defined as the percentage of tumor cells positive for Ki-67. Ki-67 PI was correlated with clinicopathological characteristics and patient survival. Results: A low Ki-67 PI (less than or equal to 50%) was associated with poorly differentiated histology - diffuse type (p=0.009) and signet ring cells (p=0.004) - and younger age (p=0.022). A worse prognosis in patients with low Ki-67 PI was also found (a mean survival of 41.8 vs 63 months for high Ki-67 PI group), but not statistically significant (p=0.623, log rank test). Discussion/Conclusion: We found an inversely correlation between Ki-67 PI and histological differentiation grade. Patients in group with low Ki-67 PI are younger, with poorly differentiated histology and have a lower mean survival. Like other studies already suggested, we may have two different tumors phenotypes - highly invasive with low proliferative capability, and less invasive potential with higher proliferative ability. However, in this sample, no significant prognostic value was achieved between both.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
PURPOSE: To quantitatively analyze and compare the fundoscopic features between fellow eyes of retinal angiomatous proliferation and typical exudative age-related macular degeneration and to identify possible predictors of neovascularization. METHODS: Retrospective case-control study. Seventy-nine fellow eyes of unilateral retinal angiomatous proliferation (n = 40) and typical exudative age-related macular degeneration (n = 39) were included. Fundoscopic features of the fellow eyes were assessed using digital color fundus photographs taken at the time of diagnosis of neovascularization in the first affected eye. Grading was performed by two independent graders using RetmarkerAMD, a computer-assisted grading software based on the International Classification and Grading System for age-related macular degeneration. RESULTS: Baseline total number and area (square micrometers) of drusen in the central 1,000, 3,000, and 6,000 μm were considerably inferior in the fellow eyes of retinal angiomatous proliferation, with statistically significant differences (P < 0.05) observed in virtually every location (1,000, 3,000, and 6,000 μm). A soft drusen (≥125 μm) area >510,196 μm2 in the central 6,000 μm was associated with an increased risk of neovascularization (hazard ratio, 4.35; 95% confidence interval [1.56-12.15]; P = 0.005). CONCLUSION: Baseline fundoscopic features of the fellow eye differ significantly between retinal angiomatous proliferation and typical exudative age-related macular degeneration. A large area (>510,196 μm2) of soft drusen in the central 6,000 μm confers a significantly higher risk of neovascularization and should be considered as a phenotypic risk factor.
Resumo:
Clinical studies of large human populations and pharmacological interventions in rodent models have recently suggested that anti-hypertensive drugs that target angiotensin II (Ang II) activity may also improve loss of bone mineral density. Here we identified in a genetic screen the Ang II type I receptor (AT1R) as a potential determinant of osteogenic differentiation and, implicitly, bone formation. Silencing of AT1R expression by RNA interference severely impaired the maturation of a multipotent mesenchymal cell line (W20-17) along the osteoblastic lineage. The same effect was also observed after the addition of the AT1R antagonist losartan but not the AT2R inhibitor PD123,319. Additional cell culture assays traced the time of greatest losartan action to the early stages of W20-17 differentiation, namely during cell proliferation. Indeed, addition of Ang II increased proliferation of differentiating W20-17 and primary mesenchymal stem cells and this stimulation was reversed by losartan treatment. Cells treated with losartan also displayed an appreciable decrease of activated (phosphorylated)-Smad2/3 proteins. Moreover, Ang II treatment elevated endogenous transforming growth factor β (TGFβ) expression considerably and in an AT1R-dependent manner. Finally, exogenous TGFβ was able to restore high proliferative activity to W20-17 cells that were treated with both Ang II and losartan. Collectively, these results suggest a novel mechanism of Ang II action in bone metabolism that is mediated by TGFβ and targets proliferation of osteoblast progenitors.
Resumo:
Adoptive Cell Transfer (ACT) Therapy is a cancer treatment that enhances and utilizes the body’s own immune system. However, this treatment has had limited success in clinical trials. We hypothesized that this is due to the immunosuppressive, acidic microenvironment of cancer tumors. We tested the effects of acidic, neutral, and basic environments in vitro on cytotoxic T lymphocyte (CTL) survival, activation, migration and killing ability and on cancer cell survival. We found that CTLs have most optimum survival, activation, and migration in a neutral environment, while the optimal extracellular conditions for EG-7 lymphoma are slightly acidic and B16-OVA melanoma survives best in physiological conditions. Future research should further study the killing ability of T cells in the three different environments and look to move to in vivo experiments.
Resumo:
PURPOSE: To quantitatively analyze and compare the fundoscopic features between fellow eyes of retinal angiomatous proliferation and typical exudative age-related macular degeneration and to identify possible predictors of neovascularization. METHODS: Retrospective case-control study. Seventy-nine fellow eyes of unilateral retinal angiomatous proliferation (n = 40) and typical exudative age-related macular degeneration (n = 39) were included. Fundoscopic features of the fellow eyes were assessed using digital color fundus photographs taken at the time of diagnosis of neovascularization in the first affected eye. Grading was performed by two independent graders using RetmarkerAMD, a computer-assisted grading software based on the International Classification and Grading System for age-related macular degeneration. RESULTS: Baseline total number and area (square micrometers) of drusen in the central 1,000, 3,000, and 6,000 μm were considerably inferior in the fellow eyes of retinal angiomatous proliferation, with statistically significant differences (P < 0.05) observed in virtually every location (1,000, 3,000, and 6,000 μm). A soft drusen (≥125 μm) area >510,196 μm2 in the central 6,000 μm was associated with an increased risk of neovascularization (hazard ratio, 4.35; 95% confidence interval [1.56-12.15]; P = 0.005). CONCLUSION: Baseline fundoscopic features of the fellow eye differ significantly between retinal angiomatous proliferation and typical exudative age-related macular degeneration. A large area (>510,196 μm2) of soft drusen in the central 6,000 μm confers a significantly higher risk of neovascularization and should be considered as a phenotypic risk factor.
Resumo:
Roots normally grow in darkness, but they may be exposed to light. After perceiving light, roots bend to escape from light (root light avoidance) and reduce their growth. How root light avoidance responses are regulated is not well understood. Here, we show that illumination induces the accumulation of flavonols in Arabidopsis thaliana roots. During root illumination, flavonols rapidly accumulate at the side closer to light in the transition zone. This accumulation promotes asymmetrical cell elongation and causes differential growth between the two sides, leading to root bending. Furthermore, roots illuminated for a long period of time accumulate high levels of flavonols. This high flavonol content decreases both auxin signaling and PLETHORA gradient as well as superoxide radical content, resulting in reduction of cell proliferation. In addition, cytokinin and hydrogen peroxide, which promote root differentiation, induce flavonol accumulation in the root transition zone. As an outcome of prolonged light exposure and flavonol accumulation, root growth is reduced and a different root developmental zonation is established. Finally, we observed that these differentiation-related pathways are required for root light avoidance. We propose that flavonols function as positional signals, integrating hormonal and ROS pathways to regulate root growth direction and rate in response to light.
Resumo:
International audience
Resumo:
Angiotensin II (Ang II) and platelet-derived growth factor-BB (PDGF-BB) are associated with excessive cell migration, proliferation and many growth-related diseases. However, whether these agents utilise similar mechanisms to trigger vascular pathologies remains to be explored. The effects of Ang II and PDGF-BB on coronary artery smooth muscle cell (CASMC) migration and proliferation were investigated via Dunn chemotaxis assay and the measurement of [3H]thymidine incorporation rates, respectively. Both atherogens produced similar degrees of cell migration which were dramatically inhibited by mevastatin (10 nM). However, the inhibitory effects of losartan (10 nM) and MnTBAP (a free radical scavenger; 50 μM) were found to be unique to Ang II-mediated chemotaxis. In contrast, MnTBAP, apocynin (an antioxidant and phagocytic NADPH oxidase inhibitor; 500 μM), mevastatin and pravastatin (100 nM) equally suppressed both Ang II and PDGF-BB-induced cellular growth. Although atherogens produced similar changes in NADPH oxidase, NOS and superoxide dismutase activities, they differentially regulated antioxidant glutathione peroxidase activity which was diminished by Ang II and unaffected by PDGF-BB. Studies with signal transduction pathway inhibitors revealed the involvement of multiple pathways i.e. protein kinase C, tyrosine kinase and MAPK in Ang II- and/or PDGF-BB-induced aforementioned enzyme activity changes. In conclusion, Ang II and PDGF-BB may induce coronary atherosclerotic disease formation by stimulating CASMC migration and proliferation through agent-specific regulation of oxidative status and utilisation of different signal transduction pathways.
Resumo:
The current work aimed to study the antitumour activity of a phenolic extract of the edible mushroom Leccinum vulpinum Watling, rich essentially in hydroxybenzoic acids. In a first approach, the mushroom extract was tested against cancer cell growth by using four human tumour cell lines. Given the positive results obtained in these initial screening experiments and the evidence of some studies for an inverse relationship between mushroom consumption and breast cancer risk, a detailed study of the bioactivity of the extract was carried out on MCF-7 cells. Once the selected cell line to precede the work was the breast adenocarcinoma cell line, the human breast non-malignant cell line MCF-10A was used as control. Overall, the extract decreased cellular proliferation and induced apoptosis. Furthermore, the results also suggest that the extract causes cellular DNA damage. Data obtained highlight the potential of mushrooms as a source of biologically active compounds, particularly with antitumour activity.
Resumo:
Dissertação de Mestrado, Ciências Biomédicas, Departamento de Medicina e Ciências Biomédicas, Universidade do Algarve, 2015
Resumo:
Purpose: To determine the effect of phlomisoside F (PMF) on the proliferation, migration and invasion of human non-small cell lung cancer cell line A549 and explore the possible mechanisms. Methods: The anti-proliferative effect of PMF on A549 cells was determined by CCK-8. Subsequently, migration and invasion were evaluated by Transwell and Transwell with matrigel assays, respectively. Furthermore, cell cycle and apoptosis were assessed by flow cytometry, while the mechanisms of action were determined by Western blotting. Results: PMF exhibited significant anti-proliferative effect on A549 cells in concentration-dependent and time-dependent manners, with half maximal inhibitory concentration (IC50) of 54.51 μM. Treatment with PMF (10, 20 and 40 μM) for 48 h resulted in significantly decreased migration and invasion in A549 cells. In addition, PMF at concentrations of 25, 50 and 75 μM induced cell cycle arrest in G0/G1phase and enhanced cell apoptosis in A549 cells. Furthermore, caspase-3, caspase-9 and Bax protein expressions were up-regulated while Bacl-2 and COX-2 protein expressions were significantly downregulated at 10, 20 and 40 μM concentrations of PMF. Conclusion: PMF suppresses A549 cell growth, migration and invasion. The mechanism may be related to the induction of mitochondria-mediated apoptosis pathway via regulation of caspase-3, caspase-9, Bcl-2 and Bax expressions, and inhibition of PGE2 synthesis by reducing COX-2 expression.
Resumo:
Purpose: To investigate the effect of withaferin A (WFA) on the proliferation and migration of brain endothelial cells. Methods: BALB-5023 mouse microvascular cells were treated with a range of withaferin A (WFA) concentrations from 10 to 100 ng/mL. Dojindo’s CCK-8 cell proliferation kit was used for the analysis of cell proliferation. Transwell cell culture inserts were used to determine the migration potential of WFAtreated endothelial cells. Absorbance was measured at 450 nm on an enzyme-linked immunosorbent (ELISA) reader. Results: The results revealed a significant increase in the proliferation and migration of endothelial cells following treatment with a low concentration (30 ng/mL) of WFA compared with the higher concentration (> 10 ng/mL). The effect was further enhanced when WFA was used in combination with soluble Fas ligand (sFasL). Autocrine signaling of vascular endothelial growth factor (VEGF) by endothelial cells was significantly increased following treatment with WFA or in combination with sFasL. WFA increased the expression of Fas on endothelial cells, suggesting the involvement of sFasL in the proliferation and migration of brain endothelial cells. Conclusion: Thus, WFA promotes the proliferation and migration of endothelial cells through increase in the expression of Fas and secretion of VEGF.
Resumo:
2016
Resumo:
Elevated expression of tumour necrosis factora (TNF-a) is associated with adverse pregnancy outcome. This study has examined the expression of TNF-a and its receptors (TNF-Rs) by mouse blastocysts and blastocyst outgrowths from day 4 to 9.5 of pregnancy and investigated the effects of elevated TNF-a on the inner cell mass (ICM) and trophoblast cells of blastocyst outgrowths. RTPCR demonstrated TNF-a mRNA expression from day 7.5 to 9.5, TNF-R1 from day 6.5 to 9.5 and TNF-R2 from day 5.5 to 7.5 of pregnancy, and in situ hybridisation revealed the trophoblast giant cells (TGCs) of the early placenta as the site of TNF-a expression. Day 4 blastocysts were cultured in a physiologically high concentration of TNF-a (100 ng/ml) for 72 h to the outgrowth stage and then compared to blastocysts cultured in media alone. TNF-a-treated blastocyst outgrowths exhibited a significant reduction in ICM cells (mean € SD 23.90€10.42 vs 9.37€7.45, t-test, P<0.0001) with no significant change in the numbers of trophoblast cells (19.97€8.14 vs 21.73€7.79, t-test, P=0.39). Within the trophoblast cell population, the TNF-a-treated outgrowths exhibited a significant increase in multinucleated cells (14.10€5.53 vs 6.37€5.80, t-test, P<0.0001) and a corresponding significant decrease in mononucleated cells (5.87€3.60 vs 15.37€5.87, t-test, P<0.0001). In summary, this study describes the expression of TNF-a and its receptors during the peri-implantation period in the mouse. It also reports that elevated TNF-a restricts ICM proliferation in the blastocyst and changes the ratio of mononucleated to multinucleated trophoblast cells. These findings suggest a mechanism by which increased