748 resultados para Histone hyperacetylation
Resumo:
Histone acetyltransferases are important chromatin modifiers that function as transcriptional co-activators. The identification of the transcriptional regulator GCN5 as the first nuclear histone acetyltransferase in yeast directly linked chromatin remodeling to transcriptional regulation. Although emerging evidence suggests that acetyltransferases participate in multiple cellular processes, their roles in mammalian development remain undefined. In this study, I have cloned and characterized the mouse homolog of GCN5 and a closely related protein P/CAF that interacts with p300/CBP. In contrast to yeast GCN5, but similar to P/CAF, mouse GCN5 possesses an additional N-terminal domain that confers the ability to acetylate nucleosomal histones. GCN5 and P/CAF exhibit identical substrate specificity and both interact with p300/CBP. Interestingly, expression levels of GCN5 and P/CAF display a complementary pattern in mouse embryos and in adult tissues, suggesting that they have distinct tissue or developmental stage specific roles. To define the in vivo function of GCN5 and P/CAF, I have generated mice that are nullizygous for GCN5 or P/CAF. P/CAF null mice are viable and fertile with no gross morphological defects, indicating that P/CAF is dispensable for development and p300/CBP function in vivo. In contrast, mice lacking GCN5 die between 10.5–11 days of gestation. GCN5 null mice are severely retarded but have anterior ectopic outgrowth. Molecular marker analyses reveal that early mesoderm is formed in GCN5 null mice but further differentiation into distinct mesodermal lineages is perturbed. While presomitic mesoderm and chodamesoderm are missing in GCN5 mutant mice, extraembryonic tissues and lateral mesoderm are unaffected. This is consistent with our finding that GCN5 expression is absent in the heart and extraembryonic tissues but is uniform throughout the rest of the embryo. Remarkably, GCN5 mutant mice exhibit an unusually high incidence of apoptosis in the embryonic ectoderm and mesoderm. Finally, mice doubly null for GCN5 and P/CAF die much earlier than mice harboring the GCN5 mutation alone, suggesting that P/CAF and GCN5 share some overlapping function during embryogenesis. This work is the first study to show that specific acetyltransferase is important for cell survival as well as mesoderm differentiation or maintenance during early mammalian development. ^
Resumo:
Retinoids are Vitamin A derivatives that are effective chemopreventative and chemotherapeutic agents for head and neck squamous cell carcinomas (HNSCC). Despite the wide application of retinoids in cancer treatment, the mechanism by which retinoids inhibit head and neck squamous cell carcinomas is not completely understood. While in vitro models show that drugs affect cell proliferation and differentiation, in vivo models, such as tumor xenografts in nude mice drugs affect more complex parameters such as extracellular matrix formation, angiogenesis and inflammation. Therefore, we studied the effects of retinoids on the growth of the 22B HNSCC tumors using a xenograft model. In this system, retinoids had no effect on tumor cell differentiation but caused invasion of the tumor by inflammatory cells. Retinoid induced inflammation lead to tumor cell death and tumor regression. Therefore, we hypothesized that retinoids stimulated the 22B HNSCC xenografts to produce a pro-inflammatory signal such as chemokines that in turn activated host inflammatory responses. ^ We used real time quantitative RT-PCR to measure cytokine and chemokine expression in retinoid treated tumors. Treatment of tumors with an RAR-specific retinoid, LGD1550, had no effect on the expression of TNFα, IL-1α, GROα, IP-10, Rantes, MCP-1 and MIP-1α but induced IL-8 mRNA 5-fold. We further characterized the retinoid effect on IL-8 expression on the 22B HNSCC and 1483 HNSCC cells in vitro. Retinoids increased IL-8 expression and enhanced TNFα-dependent IL-8 induction. In addition, retinoids increased the basal and TNFα-dependent expression of MCP-1 but decreased the basal and TNFα dependent expression of IP-10. The effect of retinoids on IL-8 and MCP-1 expression was very rapid with increased levels of mRNA detected within 1–2 hours. This effect did not require new protein synthesis and did not result from mRNA stabilization. Both RAR and RXR ligands increased IL-8 expression whereas only RAR ligands activated MCP-1 expression. ^ We identified a functional retinoid response element in the IL-8 promoter that was located adjacent to the C/EBP-NFkB response element. TNFα treatment of the 22B cells caused rapid, transient and selective acetylation of regions of the IL-8 promoter associated with the NFkB response element. Co-treatment of the cells with retinoids plus TNF increased the acetylation of chromatin in this region without altering the kinetics of acetylation. These results demonstrate that ligand activated retinoid receptors can cooperate with NFkB in histone acetylation and chromatin remodeling. We believe that in certain HNSCC tumors this cooperation and the resulting enhancement of IL-8 expression can induce an inflammatory response that leads to tumor regression. We believe that the induction of inflammation in susceptible tumors, possibly coupled with cytotoxic interventions may be an important component in the use of retinoids to treat human squamous cancers. ^
Resumo:
Histone acetylation is a central event in transcriptional activation. The importance of this modification in mammalian development is highlighted by knockout studies that revealed loss of the histone acetyltransferases GCN5, p300, or CBP results in embryonic lethality. Furthermore, early embryogenesis is sensitive to the dosage of p300 and CBP since double p300 +/−CBP+/− heterozygotes die in utero, although either single heterozygote survives. PCAF and GCN5 physically interact with p300 and CBP in vitro. To determine whether these two groups of HATs interact functionally in vivo, we created mice lacking one or more allele of p300, GCN5 or PCAF. As expected, we found that mice heterozygous for any one of these null alleles are viable. The majority of GCN5 p300 double heterozygotes also survive to adulthood with no apparent abnormalities. However, a portion of these mice die prior to birth. These embryos are developmentally stunted and exhibit increased apoptosis compared to wild type or single GCN5 or p300 heterozygous littermates at E8.5. Tissue specification is unaffected in these embryos but organ formation is compromised. In contrast, no abnormalities were observed in mice harboring mutations in both PCAF and p300 , emphasizing the specificity of HAT functions in mammalian development. ^ Since GCN5 null embryos die early in embryogenesis because of a marked increase in apoptosis, studies of its function and mechanism in late development and in tissue specific differentiation are precluded. Here, we also report the establishment of a GCN5 null embryonic stem cell line and a conditional floxGCN5 mouse line, which will serve as powerful genetic tools to examine in depth the function of GCN5 in mammalian development and in adult tissues. ^
Resumo:
Ocean warming and ocean acidification, both consequences of anthropogenic production of CO2, will combine to influence the physiological performance of many species in the marine environment. In this study, we used an integrative approach to forecast the impact of future ocean conditions on larval purple sea urchins (Strongylocentrotus purpuratus) from the northeast Pacific Ocean. In laboratory experiments that simulated ocean warming and ocean acidification, we examined larval development, skeletal growth, metabolism and patterns of gene expression using an orthogonal comparison of two temperature (13°C and 18°C) and pCO2 (400 and 1100 µatm) conditions. Simultaneous exposure to increased temperature and pCO2 significantly reduced larval metabolism and triggered a widespread downregulation of histone encoding genes. pCO2 but not temperature impaired skeletal growth and reduced the expression of a major spicule matrix protein, suggesting that skeletal growth will not be further inhibited by ocean warming. Importantly, shifts in skeletal growth were not associated with developmental delay. Collectively, our results indicate that global change variables will have additive effects that exceed thresholds for optimized physiological performance in this keystone marine species.
Resumo:
Dosage compensation in mammals occurs by X inactivation, a silencing mechanism regulated in cis by the X inactivation center (Xic). In response to developmental cues, the Xic orchestrates events of X inactivation, including chromosome counting and choice, initiation, spread, and establishment of silencing. It remains unclear what elements make up the Xic. We previously showed that the Xic is contained within a 450-kb sequence that includes Xist, an RNA-encoding gene required for X inactivation. To characterize the Xic further, we performed deletional analysis across the 450-kb region by yeast-artificial-chromosome fragmentation and phage P1 cloning. We tested Xic deletions for cis inactivation potential by using a transgene (Tg)-based approach and found that an 80-kb subregion also enacted somatic X inactivation on autosomes. Xist RNA coated the autosome but skipped the Xic Tg, raising the possibility that X chromosome domains escape inactivation by excluding Xist RNA binding. The autosomes became late-replicating and hypoacetylated on histone H4. A deletion of the Xist 5′ sequence resulted in the loss of somatic X inactivation without abolishing Xist expression in undifferentiated cells. Thus, Xist expression in undifferentiated cells can be separated genetically from somatic silencing. Analysis of multiple Xic constructs and insertion sites indicated that long-range Xic effects can be generalized to different autosomes, thereby supporting the feasibility of a Tg-based approach for studying X inactivation.
Resumo:
In almost all animal species, immature oocytes are arrested naturally in the first meiotic prophase, with a large nucleus called the germinal vesicle. A number of previous studies showed that both activation of maturation/M phase-promoting factor (MPF) (assayed by semiquantitative cytological methods) and some other maturational events occur essentially normally in enucleated oocytes from many amphibian species and mice. Hence, for nearly three decades, it has generally been believed that nuclear material is dispensable for MPF activation and the meiotic cell cycle in vertebrate oocytes. Here, we have challenged this view by examining the histone H1 kinase activities and the molecular forms of MPF in experimentally manipulated Xenopus oocytes. We show that oocytes injected with nuclear material undergo much more rapid MPF activation and maturation than uninjected control oocytes. Conversely, enucleated oocytes, unlike nucleated counterparts, undergo only weak MPF activation in meiosis I and no detectable MPF reactivation in meiosis II, the latter accompanying inhibitory tyrosine phosphorylation of cdc2 kinase, the catalytic subunit of MPF. These results argue strongly that nuclear material is indispensable for the meiotic cell cycle, particularly MPF reactivation (or cdc2 tyrosine dephosphorylation) on entry into meiosis II, in Xenopus oocytes. The classical and general view may thus need reconsideration.
Resumo:
Extensive studies of the β-phaseolin (phas) gene in transgenic tobacco have shown that it is highly active during seed embryogenesis but is completely silent in leaf and other vegetative tissues. In vivo footprinting revealed that the lack of even basal transcriptional activity in vegetative tissues is associated with the presence of a nucleosome that is rotationally positioned with base pair precision over three phased TATA boxes present in the phas promoter. Positioning is sequence-dependent because an identical rotational setting is obtained upon nucleosome reconstitution in vitro. A comparison of DNase I and dimethyl sulfate footprints in vivo and in vitro strongly suggests that this repressive chromatin architecture is remodeled concomitant with gene activation in the developing seed. This leads to the disruption of histone-mediated DNA wrapping and the assembly of the TATA boxes into a transcriptionally competent nucleoprotein complex.
Resumo:
The PML/SP100 nuclear bodies (NBs) were first described as discrete subnuclear structures containing the SP100 protein. Subsequently, they were shown to contain the PML protein which is part of the oncogenic PML-RARα hybrid produced by the t(15;17) chromosomal translocation characteristic of acute promyelocytic leukemia. Yet, the physiological role of these nuclear bodies remains unknown. Here, we show that SP100 binds to members of the heterochromatin protein 1 (HP1) families of non-histone chromosomal proteins. Further, we demonstrate that a naturally occurring splice variant of SP100, here called SP100-HMG, is a member of the high mobility group-1 (HMG-1) protein family and may thus possess DNA-binding potential. Both HP1 and SP100-HMG concentrate in the PML/SP100 NBs, and overexpression of SP100 leads to enhanced accumulation of endogenous HP1 in these structures. When bound to a promoter, SP100, SP100-HMG and HP1 behave as transcriptional repressors in transfected mammalian cells. These observations present molecular evidence for an association between the PML/SP100 NBs and the chromatin nuclear compartment. They support a model in which the NBs may play a role in certain aspects of chromatin dynamics.
Resumo:
The BTB domain (also known as the POZ domain) is an evolutionarily conserved protein–protein interaction motif found at the N terminus of 5–10% of C2H2-type zinc-finger transcription factors, as well as in some actin-associated proteins bearing the kelch motif. Many BTB proteins are transcriptional regulators that mediate gene expression through the control of chromatin conformation. In the human promyelocytic leukemia zinc finger (PLZF) protein, the BTB domain has transcriptional repression activity, directs the protein to a nuclear punctate pattern, and interacts with components of the histone deacetylase complex. The association of the PLZF BTB domain with the histone deacetylase complex provides a mechanism of linking the transcription factor with enzymatic activities that regulate chromatin conformation. The crystal structure of the BTB domain of PLZF was determined at 1.9 Å resolution and reveals a tightly intertwined dimer with an extensive hydrophobic interface. Approximately one-quarter of the monomer surface area is involved in the dimer intermolecular contact. These features are typical of obligate homodimers, and we expect the full-length PLZF protein to exist as a branched transcription factor with two C-terminal DNA-binding regions. A surface-exposed groove lined with conserved amino acids is formed at the dimer interface, suggestive of a peptide-binding site. This groove may represent the site of interaction of the PLZF BTB domain with nuclear corepressors or other nuclear proteins.
Resumo:
A simple in vitro system that supports chromatin assembly was developed for Saccharomyces cerevisiae. The assembly reaction is ATP-dependent, uses soluble histones and assembly factors, and generates physiologically spaced nucleosomes. We analyze the pathway of histone recruitment into nucleosomes, using this system in combination with genetic methods for the manipulation of yeast. This analysis supports the model of sequential recruitment of H3/H4 tetramers and H2A/H2B dimers into nucleosomes. Using a similar approach, we show that DNA ligase I can play an important role in template repair during assembly. These studies demonstrate the utility of this system for the combined biochemical and genetic analysis of chromatin assembly in yeast.
Resumo:
Internodes of deepwater rice are induced to grow rapidly when plants become submerged. This adaptation enables deepwater rice to keep part of its foliage above the rising flood waters during the monsoon season and to avoid drowning. This growth response is, ultimately, elicited by the plant hormone gibberellin (GA). The primary target tissue for GA action is the intercalary meristem of the internode. Using differential display of mRNA, we have isolated a number of genes whose expression in the intercalary meristem is regulated by GA. The product of one of these genes was identified as an ortholog of replication protein A1 (RPA1). RPA is a heterotrimeric protein involved in DNA replication, recombination, and repair and also in regulation of transcription. A chimeric construct, in which the single-stranded DNA-binding domain of rice RPA1 was spliced into the corresponding region of yeast RPA1, was able to complement a yeast rpa1 mutant. The transcript level of rice RPA1 is high in tissues containing dividing cells. RPA1 mRNA levels increase rapidly in the intercalary meristem during submergence and treatment with GA before the increase in the level of histone H3 mRNA, a marker for DNA replication.
Resumo:
Funding: Wellcome Trust, 070247/Z/03/A. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Resumo:
Nonpathogenic, resident bacteria participate in the pathogenesis of inflammation in the small intestine, but the molecular messages produced by such bacteria are unknown. Inflammatory responses involve the recruitment of specific leukocyte subsets. We, therefore, hypothesized that butyrate, a normal bacterial metabolite, may modulate chemokine secretion by epithelial cells, by amplifying their response to proinflammatory signals. We studied the expression of the chemokine, macrophage inflammatory protein-2 (MIP-2) by the rat small intestinal epithelial cell line, IEC-6. Cells were stimulated with lipopolysaccharide or with interleukin 1β (IL-1β) and incubated with sodium butyrate. Acetylation of histones was examined in Triton X acetic acid–urea gels by PAGE. Unstimulated IEC-6 cells did not secrete MIP-2. However, lipopolysaccharide and IL-1β induced MIP-2 expression. Butyrate enhanced MIP-2 secretion both in lipopolysaccharide-stimulated and IL-1β-stimulated enterocytes; but butyrate alone did not induce MIP-2 expression. Butyrate increased the acetylation of histones extracted from the nuclei of IEC-6 cells. Furthermore, acetylation of histones (induced by trichostatin A, a specific inhibitor of histone deacetylase) enhanced MIP-2 expression by cells stimulated with IL-1β. In conclusion, trichostatin A reproduced the effects of butyrate on MIP-2 secretion. Butyrate, therefore, increases MIP-2 secretion in stimulated cells by increasing histone acetylation. We speculate that butyrate carries information from bacteria to epithelial cells. Epithelial cells transduce this signal through histone deacetylase, modulating the secretion of chemokines.
Resumo:
We report the discovery and molecular characterization of a small and very acidic nucleolar protein of an SDS/PAGE mobility corresponding to Mr 29,000 (NO29). The cDNA-deduced sequence of the Xenopus laevis protein defines a polypeptide of a calculated molecular mass of 20,121 and a pI of 3.75, with an extended acidic region near its C terminus, and is related to the major nucleolar protein, NO38, and the histone-binding protein, nucleoplasmin. This member of the nucleoplasmin family of proteins was immunolocalized to nucleoli in Xenopus oocytes and diverse somatic cells. Protein NO29 is associated with nuclear particles from Xenopus oocytes, partly complexed with protein NO38, and occurs in preribosomes but not in mature ribosomes. The location and the enormously high content of negatively charged amino acids lead to the hypothesis that NO29 might be involved in the nuclear and nucleolar accumulation of ribosomal proteins and the coordinated assembly of pre-ribosomal particles.
Resumo:
The LAZ3/BCL6 (lymphoma-associated zinc finger 3/B cell lymphomas 6) gene frequently is altered in non-Hodgkin lymphomas. It encodes a sequence-specific DNA binding transcriptional repressor that contains a conserved N-terminal domain, termed BTB/POZ (bric-à-brac tramtrack broad complex/pox viruses and zinc fingers). Using a yeast two-hybrid screen, we show here that the LAZ3/BCL6 BTB/POZ domain interacts with the SMRT (silencing mediator of retinoid and thyroid receptor) protein. SMRT originally was identified as a corepressor of unliganded retinoic acid and thyroid receptors and forms a repressive complex with a mammalian homolog of the yeast transcriptional repressor SIN3 and the HDAC-1 histone deacetylase. Protein binding assays demonstrate that the LAZ3/BCL6 BTB/POZ domain directly interacts with SMRT in vitro. Furthermore, DNA-bound LAZ3/BCL6 recruits SMRT in vivo, and both overexpressed proteins completely colocalize in nuclear dots. Finally, overexpression of SMRT enhances the LAZ3/BCL6-mediated repression. These results define SMRT as a corepressor of LAZ3/BCL6 and suggest that LAZ3/BCL6 and nuclear hormone receptors repress transcription through shared mechanisms involving SMRT recruitment and histone deacetylation.