942 resultados para Hippocampal Pyramidal Neurons
Resumo:
We have performed a screen combining subtractive hybridization with PCR to isolate genes that are regulated when neuroepithelial (NE) cells differentiate into neurons. From this screen, we have isolated a number of known genes that have not previously been associated with neurogenesis, together with several novel genes. Here we report that one of these genes, encoding a guanine nucleotide exchange factor (GEF), is regulated during the differentiation of distinct neuronal populations. We have cloned both rat and mouse GEF genes and shown that they are orthologs of the human gene, MR-GEF, which encodes a GEF that specifically activates the small GTPase, Rap1. We have therefore named the rat gene rat mr-gef (rmr-gef) and the mouse gene mouse mr-gef (mmr-gef). Here, we will collectively refer to these two rodent genes as mr-gef. Expression studies show that mr-gef is expressed by young neurons of the developing rodent CNS but not by progenitor cells in the ventricular zone (VZ). The expression pattern of mr-gef during early telencephalic neurogenesis is strikingly similar to that of GABA and the LIM homeobox gene Lhx6, a transcription factor expressed by GABAergic interneurons generated in the ventral telencephalon, some of which migrate into the cortex during development. These observations suggest that mr-gef encodes a protein that is part of a signaling pathway involved in telencephalic neurogenesis; particularly in the development of GABAergic interneurons.
Resumo:
Increasing evidence demonstrates that beta-amyloid (Ab) is toxic to synapses, resulting in the progressive dismantling of neuronal circuits. Counteract the synaptotoxic effects of Ab could be particularly relevant for providing effective treatments for Alzheimer’s disease (AD). Curcumin was recently reported to improve learning and memory in animal models of AD. Little is currently known about the specific mechanisms by which Ab affects neuronal excitability and curcumin ameliorates synaptic transmission in the hippocampus. Organotypic hippocampal slice cultures exposed to Ab1–42 were used to study the neuroprotective effects of curcumin through a spectral analysis of multi-electrode array (MEA) recordings of spontaneous neuronal activity. Curcumin counteracted both deleterious effects of Ab; the initial synaptic dysfunction and the later neuronal death. The analysis of MEA recordings of spontaneous neuronal activity showed an attenuation of signal propagation induced by Ab before cell death and curcumin-induced alterations to local field potential (LFP) phase coherence. Curcumin-mediated attenuation of Ab-induced synaptic dysfunction involved regulation of synaptic proteins, namely phospho-CaMKII and phosphosynapsin I. Taken together, our results expand the neuroprotective role of curcumin to a synaptic level. The identification of these mechanisms underlying the effects of curcumin may lead to new targets for future therapies for AD.
Resumo:
Agonists of protease-activated receptor 2 (PAR(2)) evoke hyperexcitability of dorsal root ganglia (DRG) neurons by unknown mechanisms. We examined the cellular mechanisms underlying PAR(2)-evoked hyperexcitability of mouse colonic DRG neurons to determine their potential role in pain syndromes such as visceral hyperalgesia. Colonic DRG neurons were identified by injecting Fast Blue and DiI retrograde tracers into the mouse colon. Using immunofluorescence, we found that DiI-labelled neurons contained PAR(2) immunoreactivity, confirming the presence of receptors on colonic neurons. Whole-cell current-clamp recordings of acutely dissociated neurons demonstrated that PAR(2) activation with a brief application (3 min) of PAR(2) agonists, SLIGRL-NH(2) and trypsin, evoked sustained depolarizations (up to 60 min) which were associated with increased input resistance and a marked reduction in rheobase (50% at 30 min). In voltage clamp, SLIGRL-NH(2) markedly suppressed delayed rectifier I(K) currents (55% at 10 min), but had no effect on the transient I(A) current or TTX-resistant Na(+) currents. In whole-cell current-clamp recordings, the sustained excitability evoked by PAR(2) activation was blocked by the PKC inhibitor, calphostin, and the ERK(1/2) inhibitor PD98059. Studies of ERK(1/2) phosphorylation using confocal microscopy demonstrated that SLIGRL-NH(2) increased levels of immunoreactive pERK(1/2) in DRG neurons, particularly in proximity to the plasma membrane. Thus, activation of PAR(2) receptors on colonic nociceptive neurons causes sustained hyperexcitability that is related, at least in part, to suppression of delayed rectifier I(K) currents. Both PKC and ERK(1/2) mediate the PAR(2)-induced hyperexcitability. These studies describe a novel mechanism of sensitization of colonic nociceptive neurons that may be implicated in conditions of visceral hyperalgesia such as irritable bowel syndrome.
Resumo:
Cannabidiol (CBD) is a non-psychoactive, well-tolerated, anticonvulsant plant cannabinoid, although its mechanism(s) of seizure suppression remains unknown. Here, we investigate the effect of CBD and the structurally similar cannabinoid, cannabigerol (CBG), on voltage-gated Na+ (NaV) channels, a common anti-epileptic drug target. CBG’s anticonvulsant potential was also assessed in vivo. CBD effects on NaV channels were investigated using patch-clamp recordings from rat CA1 hippocampal neurons in brain slices, human SH-SY5Y (neuroblastoma) cells and mouse cortical neurons in culture. CBG effects were also assessed in SH-SY5Y cells and mouse cortical neurons. CBD and CBG effects on veratridine-stimulated human recombinant NaV1.1, 1.2 or 1.5 channels were assessed using a membrane potential-sensitive fluorescent dye high-throughput assay. The effect of CBG on pentyleneterazole-induced (PTZ) seizures was assessed in rat. CBD (10M) blocked NaV currents in SH-SY5Y cells, mouse cortical neurons and recombinant cell lines, and affected spike parameters in rat CA1 neurons; CBD also significantly decreased membrane resistance. CBG blocked NaV to a similar degree to CBD in both SH-SY5Y and mouse recordings, but had no effect (50-200mg/kg) on PTZ-induced seizures in rat. CBD and CBG are NaV channel blockers at micromolar concentrations in human and murine neurons and recombinant cells. In contrast to previous reports investigating CBD, CBG had no effect upon PTZ-induced seizures in rat, indicating that NaV blockade per se does not correlate with anticonvulsant effects.
Resumo:
This paper considers variations of a neuron pool selection method known as Affordable Neural Network (AfNN). A saliency measure, based on the second derivative of the objective function is proposed to assess the ability of a trained AfNN to provide neuronal redundancy. The discrepancies between the various affordability variants are explained by correlating unique sub group selections with relevant saliency variations. Overall this study shows that the method in which neurons are selected from a pool is more relevant to how salient individual neurons are, than how often a particular neuron is used during training. The findings herein are relevant to not only providing an analogy to brain function but, also, in optimizing the way a neural network using the affordability method is trained.
Resumo:
Through a close analysis of socio-biologist Sarah Blaffer Hrdy’s work on motherhood and ‘mirror neurons’ it is argued that Hrdy’s claims exemplify how research that ostensibly bases itself on neuroscience, including in literary studies ‘literary Darwinism’, relies after all not on scientific, but on political assumptions, namely on underlying, unquestioned claims about the autonomous, transparent, liberal agent of consumer capitalism. These underpinning assumptions, it is further argued, involve the suppression or overlooking of an alternative, prior tradition of feminist theory, including feminist science criticism.
Resumo:
The increase in incidence and prevalence of neurodegenerative diseases highlights the need for a more comprehensive understanding of how food components may affect neural systems. In particular, flavonoids have been recognized as promising agents capable of influencing different aspects of synaptic plasticity resulting in improvements in memory and learning in both animals and humans. Our previous studies highlight the efficacy of flavonoids in reversing memory impairments in aged rats, yet little is known about the effects of these compounds in healthy animals, particularly with respect to the molecular mechanisms by which flavonoids might alter the underlying synaptic modifications responsible for behavioral changes. We demonstrate that a 3-week intervention with two dietary doses of flavonoids (Dose I: 8.7 mg/day and Dose II: 17.4 mg/day) facilitates spatial memory acquisition and consolidation (24 recall) (p < 0.05) in young healthy rats. We show for the first time that these behavioral improvements are linked to increased levels in the polysialylated form of the neural adhesion molecule (PSA-NCAM) in the dentate gyrus (DG) of the hippocampus, which is known to be required for the establishment of durable memories. We observed parallel increases in hippocampal NMDA receptors containing the NR2B subunit for both 8.7 mg/day (p < 0.05) and 17.4 mg/day (p < 0.001) doses, suggesting an enhancement of glutamate signaling following flavonoid intervention. This is further strengthened by the simultaneous modulation of hippocampal ERK/CREB/BDNF signaling and the activation of the Akt/mTOR/Arc pathway, which are crucial in inducing changes in the strength of hippocampal synaptic connections that underlie learning. Collectively, the present data supports a new role for PSA-NCAM and NMDA-NR2B receptor on flavonoid-induced improvements in learning and memory, contributing further to the growing body of evidence suggesting beneficial effects of flavonoids in cognition and brain health.
Resumo:
Heme oxygenase-1 (HO-1), an inducible enzyme up-regulated in Alzheimer‟s disease (AD), catabolises heme to biliverdin, Fe2+ and carbon monoxide (CO). CO can protect neurones from oxidative stress-induced apoptosis by inhibiting Kv2.1 channels, which mediate cellular K+ efflux as an early step in the apoptotic cascade. Since apoptosis contributes to the neuronal loss associated with amyloid β peptide (Aβ) toxicity in AD, we investigated the protective effects of HO-1 and CO against Aβ1-42 toxicity in SH-SY5Y cells, employing cells stably transfected with empty vector or expressing the cellular prion protein, PrPc, and rat primary hippocampal neurons. Aβ1-42 (containing protofibrils) caused a concentrationdependent decrease in cell viability, attributable at least in part to induction of apoptosis, with the PrPc expressing cells showing greater susceptibility to Aβ1-42 toxicity. Pharmacological induction or genetic over-expression of HO-1 significantly ameliorated the effects of Aβ1-42. The CO-donor CORM-2 protected cells against Aβ1-42 toxicity in a concentration-dependent manner. Electrophysiological studies revealed no differences in the outward current pre- and post-Aβ1-42 treatment suggesting that K+ channel activity is unaffected in these cells. Instead, Aβ toxicity was reduced by the L-type Ca2+ channel blocker nifedipine, and by the CaMKKII inhibitor, STO-609. Aβ also activated the downstream kinase, AMP-dependent protein kinase (AMPK). CO prevented this activation of AMPK. Our findings indicate that HO-1 protects against Aβ toxicity via production of CO. Protection does not arise from inhibition of apoptosis-associated K+ efflux, but rather by inhibition of AMPK activation, which has been recently implicated in the toxic effects of Aβ. These data provide a novel, beneficial effect of CO which adds to its growing potential as a therapeutic agent.
Resumo:
Dystrophin, the protein product defective in Duchenne muscular dystrophy (DMD), is present in all types of muscle and in the brain. The function of the protein is unknown and its role in the brain is unclear, although 30% of DMD patients show nonprogressive mental retardation. We have therefore studied the localisation of dystrophin in cultures of normal and DMD human fetal neurons using antibodies raised to different regions of the protein. Dystrophin immunoreactivity was demonstrated in the soma and axon hillock of normal neurons and appeared to be associated with the inner part of the cell membrane, although some intracellular staining was also observed. Positive dystrophin staining was present only in cells with fully developed neuronal features, although not all the neurons were positive. Glial cells were always negative for the antigen. Immunostaining with antibodies to the brain spectrins indicate that the dystrophin antibodies did not crossreact with these proteins. The possibility of cross-reactivity with other proteins is discussed. Studies of cells cultured from a DMD fetus also showed specific dystrophin immunostaining in neurons, although the muscle was generally negative for dystrophin. However, the localisation of dystrophin immunostaining and that of the brain spectrins and neurofilaments appeared abnormal, as did the overall morphology of the cells. This suggests that dystrophin may play a role during brain development and dystrophin deficiency results in abnormal neuronal features. This would be consistent with the nonprogressive nature of the mental retardation observed in DMD patients.
Resumo:
Diabetes mellitus is the most common endocrine disturbance of domestic carnivores and can cause autonomic neurological disorders, although these are still poorly understood in veterinary medicine. There is little information available on the quantitative adaptation mechanisms of the sympathetic ganglia during diabetes mellitus in domestic mammals. By combining morphometric methods and NADPH-diaphorase staining (as a possible marker for nitric oxide producing neurons), type I diabetes mellitus-related morphoquantitative changes were investigated in the celiac ganglion neurons in dogs. Twelve left celiac ganglia from adult female German shepherd dogs were examined: six ganglia were from non-diabetic and six from diabetic subjects. Consistent hypertrophy of the ganglia was noted in diabetic animals with increase of 55% in length, 53% in width, and 61.5% in thickness. The ordinary microstructure of the ganglia was modified leading to an uneven distribution of the ganglionic units and a more evident distribution of axon fascicles. In contrast to non-diabetic dogs, there was a lack of NADPH-diaphorase perikarial labelling in the celiac ganglion neurons of diabetic animals. The morphometric study showed that both the neuronal and nuclear sizes were significantly larger in diabetic dogs (1.3 and 1.39 times, respectively). The profile density and area fraction of NADPH-diaphorase-reactive celiac ganglion neurons were significantly larger (1.35 and 1.48 times, respectively) in non-diabetic dogs compared to NADPH-diaphorase-non-reactive celiac ganglion neurons in diabetic dogs. Although this study suggests that diabetic neuropathy is associated with neuronal hypertrophy, controversy remains over the possibility of ongoing neuronal loss and the functional interrelationship between them. It is unclear whether neuronal hypertrophy could be a compensation mechanism for a putative neuronal loss during the diabetes mellitus. (C) 2007 Elsevier Ltd. All rights reserved.