951 resultados para HIGH-POWER APPLICATIONS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Numerical modeling of cascade erbium-doped and holmium-doped fluoride fiber lasers is presented. Fiber lengths were optimized for cascade lasers that had fixed or free-running wavelengths using all known spectroscopic parameters. The performance of the cascade laser was tested against dopant concentration, energy transfer process, heat generation, output coupling, and pump schemes. The results suggest that the slope efficiencies and thresholds for both transitions increase with increasing Ho3+ or Er3+ concentration with the slope efficiency stabilizing after 1 mol% rare earth doping. The heat generation in the Ho3+-based system is lower compared to the Er 3+-based system at low dopant concentration as a result of the lower rates of multiphonon relaxation. Decreasing the output coupling for the upper (∼3 μm) transition decreases the threshold of the lower transition and the upper transition benefits from decreasing the output coupling for the lower transition for both cascade systems. The highest slope efficiency was achieved under counter-propagating pump conditions. Saturation of the output power occurs at comparatively higher pump power with dilute Er3+ doping compared with heavier doping. Overall, we show that the cascade Ho3+ -doped fluoride laser is the best candidate for high power output because of its higher slope efficiency and lower temperature excursion of the core and no saturation of the output. © 2013 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the impact of methane concentration in hydrogen plasma on the growth of large-grained polycrystalline diamond (PCD) films and its hydrogen impurity incorporation. The diamond samples were produced using high CH4 concentration in H2 plasma and high power up to 4350 W and high pressure (either 105 or 110 Torr) in a microwave plasma chemical vapor deposition (MPCVD) system. The thickness of the free-standing diamond films varies from 165 µm to 430 µm. Scanning electron microscopy (SEM), micro-Raman spectroscopy and Fourier-transform infrared (FTIR) spectroscopy were used to characterize the morphology, crystalline and optical quality of the diamond samples, and bonded hydrogen impurity in the diamond films, respectively. Under the conditions employed here, when methane concentration in the gas phase increases from 3.75% to 7.5%, the growth rate of the PCD films rises from around 3.0 µm/h up to 8.5 µm/h, and the optical active bonded hydrogen impurity content also increases more than one times, especially the two CVD diamond specific H related infrared absorption peaks at 2818 and 2828 cm−1 rise strongly; while the crystalline and optical quality of the MCD films decreases significantly, namely structural defects and non-diamond carbon phase content also increases a lot with increasing of methane concentration. Based on the results, the relationship between methane concentration and diamond growth rate and hydrogen impurity incorporation including the form of bonded infrared active hydrogen impurity in CVD diamonds was analyzed and discussed. The effect of substrate temperature on diamond growth was also briefly discussed. The experimental findings indicate that bonded hydrogen impurity in CVD diamond films mainly comes from methane rather than hydrogen in the gas source, and thus can provide experimental evidence for the theoretical study of the standard methyl species dominated growth mechanism of CVD diamonds grown with methane/hydrogen mixtures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Solar energy is the most abundant, widely distributed and clean renewable energy resource. Since the insolation intensity is only in the range of 0.5 - 1.0 kW/m2, solar concentrators are required for attaining temperatures appropriate for medium and high temperature applications. The concentrated energy is transferred through an absorber to a thermal fluid such as air, water or other fluids for various uses. This paper describes design and development of a 'Linear Fresnel Mirror Solar Concentrator' (LFMSC) using long thin strips of mirrors to focus sunlight on to a fixed receiver located at a common focal line. Our LFMSC system comprises a reflector (concentrator), receiver (target) and an innovative solar tracking mechanism. Reflectors are mirror strips, mounted on tubes which are fixed to a base frame. The tubes can be rotated to align the strips to focus solar radiation on the receiver (target). The latter comprises a coated tube carrying water and covered by a glass plate. This is mounted at an elevation of few meters above the horizontal, parallel to the plane of the mirrors. The reflector is oriented along north-south axis. The most difficult task is tracking. This is achieved by single axis tracking using a four bar link mechanism. Thus tracking has been made simple and easy to operate. The LFMSC setup is used for generating steam for a variety of applications. © 2013 The Authors. Published by Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present experimental measurements of intensity spatiotemporal dynamics in quasi-CW Raman fiber laser. Depending on the power, the laser operates in different spatio-temporal regimes varying from partial mode-locking near the generation threshold to almost stochastic radiation and a generation of short-lived pulses at high power. The transitions between the generation regimes are evident in intensity spatio-temporal dynamics. Two-dimensional auto-correlation functions provide an additional insight into temporal and spatial properties of the observed regimes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes a novel dc-dc converter topology to achieve an ultrahigh step-up ratio while maintaining a high conversion efficiency. It adopts a three degree of freedom approach in the circuit design. It also demonstrates the flexibility of the proposed converter to combine with the features of modularity, electrical isolation, soft-switching, low voltage stress on switching devices, and is thus considered to be an improved topology over traditional dc-dc converters. New control strategies including the two-section output voltage control and cell idle control are also developed to improve the converter performance. With the cell idle control, the secondary winding inductance of the idle module is bypassed to decrease its power loss. A 400-W dc-dc converter is prototyped and tested to verify the proposed techniques, in addition to a simulation study. The step-up conversion ratio can reach 1:14 with a peak efficiency of 94% and the proposed techniques can be applied to a wide range of high voltage and high power distributed generation and dc power transmission.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper will review the recent advances in the field of ultrashort pulse generation from optically pumped vertical-external-cavity surface-emitting lasers (OP-VECSELs). In this review, we will summarize the most significant results presented over the last 15 years, before highlighting recent breakthroughs related to mode-locked VECSELs by different research groups. Different mode-locking techniques for OP-VECSELs are described in detail. Previously, saturable absorbers, such as semiconductor saturable absorber mirrors—external, or internal as in mode-locked integrated external-cavity surface emitting lasers (MIXSEL)—, and recently, novel-material-based carbon-nanotube and graphene saturable absorbers have been employed. A new mode-locking method was presented and discussed in recent years. This method is referred to as self-mode-locking or saturable-absorber-free operation of mode-locked VECSELs. In this context, we particularly focus on achievements regarding self-mode-locking, which is considered a promising technique for the realization of high-power, compact, robust and cost-efficient ultrashort pulse lasers. To date, the presented mode-locking techniques have led to great enhancement in average powers, peak powers, and repetition rates that can be achieved with passively mode-locked VECSELs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Permanent magnet synchronous motors (PMSMs) provide a competitive technology for EV traction drives owing to their high power density and high efficiency. In this paper, three types of interior PMSMs with different PM arrangements are modeled by the finite element method (FEM). For a given amount of permanent magnet materials, the V shape interior PMSM is found better than the U-shape and the conventional rotor topologies for EV traction drives. Then the V shape interior PMSM is further analyzed with the effects of stator slot opening and the permanent magnet pole chamfering on cogging torque and output torque performance. A vector-controlled flux-weakening method is developed and simulated in matlab to expand the motor speed range for EV drive system. The results show good dynamic and steady-state performance with a capability of expanding speed up to 4 times of the rated. A prototype of the V shape interior PMSM is also manufactured and tested to validate the numerical models built by the finite element method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study investigated the opinions regarding inclusion of parents of both disabled and nondisabled elementary children from a large suburban county. An opinion survey combining Wilczenski's Attitudes Toward Inclusive Education Scale with additional questions was distributed to 1170 children from 24 schools. Three research questions focused on differences between mean parental responses as they related to the inclusion and disability status of the parent's child. Results from the 270 respondents indicated that parents with disabled children had more favorable opinions about inclusion than did those with nondisabled children. Parents with included children were more favorable toward inclusion than were parents whose children were not included. Parents with included disabled children were more accepting of inclusion than were those with nondisabled children in inclusive settings. Parents' answers differed depending on the type of disability being included. Regardless of their child's disability or inclusion status, the ranking for disability types from most acceptable for inclusion to least acceptable were: social, sensory, motor, academic and behavioral. Results across types of questions, including questions relating to acceptance and general inclusion issues, indicated consistently more favorable opinions of parents with disabled children, included children and disabled children in inclusive classes. Two additional research questions examined parental responses as they related to demographic characteristics of the parents and of the schools their children attended. Analysis of Variance found only one significant main effect for any parental demographic variable. This difference was for the number of parents' elementary children when comparing parents with and without disabled children. The only significant main effects of demographics of schools the parents' children attended were for the area of the county and for schools with differing percentages of severely disabled students when comparing responses of parents with disabled and nondisabled children. For all research questions, tests indicated low effect sizes and moderate to high power levels. These results, and the fact that means for all groups were in the middle range of response choices, indicate that there may be little practical significance to the overall results. Further studies should investigate the trends found in this study. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study surveys the occurrence of nodulation in woody legume species in Panamá and Costa Rica, describes nodule and root characteristics, and researches host-bacteria specificity, nodulation potential of soils, and the effects of light, added nitrogen, and rhizobia and VA mycorrhizal fungi inoculation on seedling growth. I examined 83 species in 37 genera and found 80% to be nodulated. Percent nodulated species in the Caesalpinioideae, Mimosoideae, and Papilionoideae was 17, 95, and 86, respectively, with no correlation between nodule morphology and tribal classification. Nodules formed mainly at root branch points which supports epidermal breaks as an important rhizobia infection route. More non-nodulated than nodulated species had root hairs. Several species emitted volatile sulfur-containing compounds, including the toxic compound ethylmercaptan, from roots, germinating seeds, and other tissues. These emissions may have an allelopathic action against pathogens, predators, or other plants. In contrast to the general non-specificity of most legumes for rhizobia, Mimosa pigra L. was highly specific and only nodulated in flooded soils. This species' specificity, combined with a limited occurrence of its root nodule bacteria may limit its natural distribution, but its spread as an invasive weed is facilitated when fill material from rivers is deposited in other areas. ^ An experimental light level of 1.5% of full sun completely inhibited seedling nodulation, as do similar naturally low levels in forest understory. In the forest, trees and seedlings were not nodulated. in some soils with suspected high N content. For six experimental species, added N progressively increased seedling growth while decreasing nodule biomass; at the highest level of added N nodulation was completely suppressed. Species and individuals showed variation in nodule biomass at high N applications which may indicate an opportunity for genetic selection for optimal N acquisition. Rhizobia inoculation had a small positive effect on seedling shoot growth, but VA mycorrhiza inoculation overwhelmingly increased seedling size, biomass, and leaf mineral concentration. In lowland tropical forest, VA mycorrhizal colonization appears indispensable for legume nodulation because of the fungus' ability to supply P in deficient soils. This requirement makes the legume-rhizobia-mycorrhiza association obligately tripartite. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increased device density, switching speeds of integrated circuits and decrease in package size is placing new demands for high power thermal-management. The convectional method of forced air cooling with passive heat sink can handle heat fluxes up-to 3-5W/cm2; however current microprocessors are operating at levels of 100W/cm2, This demands the usage of novel thermal-management systems. In this work, water-cooling systems with active heat sink are embedded in the substrate. The research involved fabricating LTCC substrates of various configurations - an open-duct substrate, the second with thermal vias and the third with thermal vias and free-standing metal columns and metal foil. Thermal testing was performed experimentally and these results are compared with CFD results. An overall thermal resistance for the base substrate is demonstrated to be 3.4oC/W-cm2. Addition of thermal vias reduces the effective resistance of the system by 7times and further addition of free standing columns reduced it by 20times.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The unprecedented and relentless growth in the electronics industry is feeding the demand for integrated circuits (ICs) with increasing functionality and performance at minimum cost and power consumption. As predicted by Moore's law, ICs are being aggressively scaled to meet this demand. While the continuous scaling of process technology is reducing gate delays, the performance of ICs is being increasingly dominated by interconnect delays. In an effort to improve submicrometer interconnect performance, to increase packing density, and to reduce chip area and power consumption, the semiconductor industry is focusing on three-dimensional (3D) integration. However, volume production and commercial exploitation of 3D integration are not feasible yet due to significant technical hurdles.

At the present time, interposer-based 2.5D integration is emerging as a precursor to stacked 3D integration. All the dies and the interposer in a 2.5D IC must be adequately tested for product qualification. However, since the structure of 2.5D ICs is different from the traditional 2D ICs, new challenges have emerged: (1) pre-bond interposer testing, (2) lack of test access, (3) limited ability for at-speed testing, (4) high density I/O ports and interconnects, (5) reduced number of test pins, and (6) high power consumption. This research targets the above challenges and effective solutions have been developed to test both dies and the interposer.

The dissertation first introduces the basic concepts of 3D ICs and 2.5D ICs. Prior work on testing of 2.5D ICs is studied. An efficient method is presented to locate defects in a passive interposer before stacking. The proposed test architecture uses e-fuses that can be programmed to connect or disconnect functional paths inside the interposer. The concept of a die footprint is utilized for interconnect testing, and the overall assembly and test flow is described. Moreover, the concept of weighted critical area is defined and utilized to reduce test time. In order to fully determine the location of each e-fuse and the order of functional interconnects in a test path, we also present a test-path design algorithm. The proposed algorithm can generate all test paths for interconnect testing.

In order to test for opens, shorts, and interconnect delay defects in the interposer, a test architecture is proposed that is fully compatible with the IEEE 1149.1 standard and relies on an enhancement of the standard test access port (TAP) controller. To reduce test cost, a test-path design and scheduling technique is also presented that minimizes a composite cost function based on test time and the design-for-test (DfT) overhead in terms of additional through silicon vias (TSVs) and micro-bumps needed for test access. The locations of the dies on the interposer are taken into consideration in order to determine the order of dies in a test path.

To address the scenario of high density of I/O ports and interconnects, an efficient built-in self-test (BIST) technique is presented that targets the dies and the interposer interconnects. The proposed BIST architecture can be enabled by the standard TAP controller in the IEEE 1149.1 standard. The area overhead introduced by this BIST architecture is negligible; it includes two simple BIST controllers, a linear-feedback-shift-register (LFSR), a multiple-input-signature-register (MISR), and some extensions to the boundary-scan cells in the dies on the interposer. With these extensions, all boundary-scan cells can be used for self-configuration and self-diagnosis during interconnect testing. To reduce the overall test cost, a test scheduling and optimization technique under power constraints is described.

In order to accomplish testing with a small number test pins, the dissertation presents two efficient ExTest scheduling strategies that implements interconnect testing between tiles inside an system on chip (SoC) die on the interposer while satisfying the practical constraint that the number of required test pins cannot exceed the number of available pins at the chip level. The tiles in the SoC are divided into groups based on the manner in which they are interconnected. In order to minimize the test time, two optimization solutions are introduced. The first solution minimizes the number of input test pins, and the second solution minimizes the number output test pins. In addition, two subgroup configuration methods are further proposed to generate subgroups inside each test group.

Finally, the dissertation presents a programmable method for shift-clock stagger assignment to reduce power supply noise during SoC die testing in 2.5D ICs. An SoC die in the 2.5D IC is typically composed of several blocks and two neighboring blocks that share the same power rails should not be toggled at the same time during shift. Therefore, the proposed programmable method does not assign the same stagger value to neighboring blocks. The positions of all blocks are first analyzed and the shared boundary length between blocks is then calculated. Based on the position relationships between the blocks, a mathematical model is presented to derive optimal result for small-to-medium sized problems. For larger designs, a heuristic algorithm is proposed and evaluated.

In summary, the dissertation targets important design and optimization problems related to testing of interposer-based 2.5D ICs. The proposed research has led to theoretical insights, experiment results, and a set of test and design-for-test methods to make testing effective and feasible from a cost perspective.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Consumers have relationships with other people, and they have relationships with brands similar to the ones they have with other people. Yet, very little is known about how brand and interpersonal relationships relate to one another. Even less is known about how they jointly affect consumer well-being. The goal of this research, therefore, is to examine how brand and interpersonal relationships influence and are influenced by consumer well-being. Essay 1 uses both empirical methods and surveys from individuals and couples to investigate how consumer preferences in romantic couples, namely brand compatibility, influences life satisfaction. Using traditional statistical techniques and multilevel modeling, I find that the effect of brand compatibility, or the extent to which individuals have similar brand preferences, on life satisfaction depends upon power in the relationship. For high power partners, brand compatibility has no effect on life satisfaction. On the other hand, for low power partners, low brand compatibility is associated with decreased life satisfaction. I find that conflict mediates the link between brand compatibility and power on life satisfaction. In Essay 2 I again use empirical methods and surveys to investigate how resources, which can be considered a form of consumer well-being, influence brand and interpersonal relations. Although social connections have long been considered a fundamental human motivation and deemed necessary for well-being (Baumeister and Leary 1995), recent research has demonstrated that having greater resources is associated with weaker social connections. In the current research I posit that individuals with greater resources still have a need to connect and are using other sources for connection, namely brands. Across several studies I test and find support for my theory that resource level shifts the preference of social connection from people to brands. Specifically, I find that individuals with greater resources have stronger brand relationships, as measured by self-brand connection, brand satisfaction, purchase intentions and willingness to pay with both existing brand relationships and with new brands. This suggests that individuals with greater resources place more emphasis on these relationships. Furthermore, I find that resource level influences the stated importance of brand and interpersonal relationships, and that having or perceiving greater resources is associated with an increased preference to engage with brands over people. This research demonstrates that there are times when people prefer and seek out connections with brands over other people, and highlights the ways in which our brand and interpersonal relationships influence one another.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present clinicopathologic data on 10 pulmonary myxoid sarcomas, which are defined by distinctive histomorphologic features and characterized by a recurrent fusion gene, that appear to represent a distinct tumor entity at this site. The patients [7 female, 3 male; aged 27 to 67 y (mean, 45 y)] presented with local or systemic symptoms (n=5), symptoms from cerebral metastasis (1), or incidentally (2). Follow-up of 6 patients showed that 1 with brain metastasis died shortly after primary tumor resection, 1 developed a renal metastasis but is alive and well, and 4 are disease free after 1 to 15 years. All tumors involved pulmonary parenchyma, with a predominant endobronchial component in 8 and ranged from 1.5 to 4 cm. Microscopically, they were lobulated and composed of cords of polygonal, spindle, or stellate cells within myxoid stroma, morphologically reminiscent of extraskeletal myxoid chondrosarcoma. Four cases showed no or minimal atypia, 6 showed focal pleomorphism, and 5 had necrosis. Mitotic indices varied, with most tumors not exceeding 5/10 high-power fields. Tumors were immunoreactive for only vimentin and weakly focal for epithelial membrane antigen. Of 9 tumors, 7 were shown to harbor a specific EWSR1-CREB1 fusion by reverse transcription-polymerase chain reaction and direct sequencing, with 7 of 10 showing EWSR1 rearrangement by fluorescence in situ hybridization. This gene fusion has been described previously in 2 histologically and behaviorally different sarcomas: clear cell sarcoma-like tumors of the gastrointestinal tract and angiomatoid fibrous histiocytomas; however, this is a novel finding in tumors with the morphology we describe and that occur in the pulmonary region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Harnessing solar energy to provide for the thermal needs of buildings is one of the most promising solutions to the global energy issue. Exploiting the additional surface area provided by the building’s façade can significantly increase the solar energy output. Developing a range of integrated and adaptable products that do not significantly affect the building’s aesthetics is vital to enabling the building integrated solar thermal market to expand and prosper. This work reviews and evaluates solar thermal facades in terms of the standard collector type, which they are based on, and their component make-up. Daily efficiency models are presented, based on a combination of the Hottel Whillier Bliss model and finite element simulation. Novel and market available solar thermal systems are also reviewed and evaluated using standard evaluation methods, based on experimentally determined parameters ISO 9806. Solar thermal collectors integrated directly into the facade benefit from the additional wall insulation at the back; displaying higher efficiencies then an identical collector offset from the facade. Unglazed solar thermal facades with high capacitance absorbers (e.g. concrete) experience a shift in peak maximum energy yield and display a lower sensitivity to ambient conditions than the traditional metallic based unglazed collectors. Glazed solar thermal facades, used for high temperature applications (domestic hot water), result in overheating of the building’s interior which can be reduced significantly through the inclusion of high quality wall insulation. For low temperature applications (preheating systems), the cheaper unglazed systems offer the most economic solution. The inclusion of brighter colour for the glazing and darker colour for the absorber shows the lowest efficiency reductions (<4%). Novel solar thermal façade solutions include solar collectors integrated into balcony rails, shading devices, louvers, windows or gutters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High order harmonics generated at relativistic intensities have long been recognized as a route to the most powerful extreme ultraviolet pulses. Reliably generating isolated attosecond pulses requires gating to only a single dominant optical cycle, but techniques developed for lower power lasers have not been readily transferable. We present a novel method to temporally gate attosecond pulse trains by combining noncollinear and polarization gating. This scheme uses a split beam configuration which allows pulse gating to be implemented at the high beam fluence typical of multi-TW to PW class laser systems. Scalings for the gate width demonstrate that isolated attosecond pulses are possible even for modest pulse durations achievable for existing and planned future ultrashort high-power laser systems. Experimental results demonstrating the spectral effects of temporal gating on harmonic spectra generated by a relativistic laser plasma interaction are shown.