994 resultados para H 980 T278t
Resumo:
BACKGROUND Strategies to improve risk prediction are of major importance in patients with heart failure (HF). Fibroblast growth factor 23 (FGF-23) is an endocrine regulator of phosphate and vitamin D homeostasis associated with an increased cardiovascular risk. We aimed to assess the prognostic effect of FGF-23 on mortality in HF patients with a particular focus on differences between patients with HF with preserved ejection fraction and patients with HF with reduced ejection fraction (HFrEF). METHODS AND RESULTS FGF-23 levels were measured in 980 patients with HF enrolled in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study including 511 patients with HFrEF and 469 patients with HF with preserved ejection fraction and a median follow-up time of 8.6 years. FGF-23 was additionally measured in a second cohort comprising 320 patients with advanced HFrEF. FGF-23 was independently associated with mortality with an adjusted hazard ratio per 1-SD increase of 1.30 (95% confidence interval, 1.14-1.48; P<0.001) in patients with HFrEF, whereas no such association was found in patients with HF with preserved ejection fraction (for interaction, P=0.043). External validation confirmed the significant association with mortality with an adjusted hazard ratio per 1 SD of 1.23 (95% confidence interval, 1.02-1.60; P=0.027). FGF-23 demonstrated an increased discriminatory power for mortality in addition to N-terminal pro-B-type natriuretic peptide (C-statistic: 0.59 versus 0.63) and an improvement in net reclassification index (39.6%; P<0.001). CONCLUSIONS FGF-23 is independently associated with an increased risk of mortality in patients with HFrEF but not in those with HF with preserved ejection fraction, suggesting a different pathophysiologic role for both entities.
Resumo:
Dysregulation of sleep or feeding has enormous health consequences. In humans, acute sleep loss is associated with increased appetite and insulin insensitivity, while chronically sleep-deprived individuals are more likely to develop obesity, metabolic syndrome, type II diabetes, and cardiovascular disease. Conversely, metabolic state potently modulates sleep and circadian behavior; yet, the molecular basis for sleep-metabolism interactions remains poorly understood. Here, we describe the identification of translin (trsn), a highly conserved RNA/DNA binding protein, as essential for starvation-induced sleep suppression. Strikingly, trsn does not appear to regulate energy stores, free glucose levels, or feeding behavior suggesting the sleep phenotype of trsn mutant flies is not a consequence of general metabolic dysfunction or blunted response to starvation. While broadly expressed in all neurons, trsn is transcriptionally upregulated in the heads of flies in response to starvation. Spatially restricted rescue or targeted knockdown localizes trsn function to neurons that produce the tachykinin family neuropeptide Leucokinin. Manipulation of neural activity in Leucokinin neurons revealed these neurons to be required for starvation-induced sleep suppression. Taken together, these findings establish trsn as an essential integrator of sleep and metabolic state, with implications for understanding the neural mechanism underlying sleep disruption in response to environmental perturbation.
Resumo:
Bibliograph. Nachweis: Paas, Political broadsheet, P-980
Resumo:
Purpose: Traditional patient-specific IMRT QA measurements are labor intensive and consume machine time. Calculation-based IMRT QA methods typically are not comprehensive. We have developed a comprehensive calculation-based IMRT QA method to detect uncertainties introduced by the initial dose calculation, the data transfer through the Record-and-Verify (R&V) system, and various aspects of the physical delivery. Methods: We recomputed the treatment plans in the patient geometry for 48 cases using data from the R&V, and from the delivery unit to calculate the “as-transferred” and “as-delivered” doses respectively. These data were sent to the original TPS to verify transfer and delivery or to a second TPS to verify the original calculation. For each dataset we examined the dose computed from the R&V record (RV) and from the delivery records (Tx), and the dose computed with a second verification TPS (vTPS). Each verification dose was compared to the clinical dose distribution using 3D gamma analysis and by comparison of mean dose and ROI-specific dose levels to target volumes. Plans were also compared to IMRT QA absolute and relative dose measurements. Results: The average 3D gamma passing percentages using 3%-3mm, 2%-2mm, and 1%-1mm criteria for the RV plan were 100.0 (σ=0.0), 100.0 (σ=0.0), and 100.0 (σ=0.1); for the Tx plan they were 100.0 (σ=0.0), 100.0 (σ=0.0), and 99.0 (σ=1.4); and for the vTPS plan they were 99.3 (σ=0.6), 97.2 (σ=1.5), and 79.0 (σ=8.6). When comparing target volume doses in the RV, Tx, and vTPS plans to the clinical plans, the average ratios of ROI mean doses were 0.999 (σ=0.001), 1.001 (σ=0.002), and 0.990 (σ=0.009) and ROI-specific dose levels were 0.999 (σ=0.001), 1.001 (σ=0.002), and 0.980 (σ=0.043), respectively. Comparing the clinical, RV, TR, and vTPS calculated doses to the IMRT QA measurements for all 48 patients, the average ratios for absolute doses were 0.999 (σ=0.013), 0.998 (σ=0.013), 0.999 σ=0.015), and 0.990 (σ=0.012), respectively, and the average 2D gamma(5%-3mm) passing percentages for relative doses for 9 patients was were 99.36 (σ=0.68), 99.50 (σ=0.49), 99.13 (σ=0.84), and 98.76 (σ=1.66), respectively. Conclusions: Together with mechanical and dosimetric QA, our calculation-based IMRT QA method promises to minimize the need for patient-specific QA measurements by identifying outliers in need of further review.
Resumo:
Stable isotope and ice-rafted debris records from three core sites in the mid-latitude North Atlantic (IODP Site U1313, MD01-2446, MD03-2699) are combined with records of ODP Sites 1056/1058 and 980 to reconstruct hydrographic conditions during the middle Pleistocene spanning Marine Isotope Stages (MIS) 9-14 (300-540 ka). Core MD03-2699 is the first high-resolution mid-Brunhes record from the North Atlantic's eastern boundary upwelling system covering the complete MIS 11c interval and MIS 13. The array of sites reflect western and eastern basin boundary current as well as north to south transect sampling of subpolar and transitional water masses and allow the reconstruction of transport pathways in the upper limb of the North Atlantic's circulation. Hydrographic conditions in the surface and deep ocean during peak interglacial MIS 9 and 11 were similar among all the sites with relative stable conditions and confirm prolonged warmth during MIS 11c also for the mid-latitudes. Sea surface temperature (SST) reconstructions further reveal that in the mid-latitude North Atlantic MIS 11c is associated with two plateaus, the younger one of which is slightly warmer. Enhanced subsurface northward heat transport in the eastern boundary current system, especially during early MIS 11c, is denoted by the presence of tropical planktic foraminifer species and raises the question how strongly it impacted the Portuguese upwelling system. Deep water ventilation at the onset of MIS 11c significantly preceded surface water ventilation. Although MIS 13 was generally colder and more variable than the younger interglacials the surface water circulation scheme was the same. The greatest differences between the sites existed during the glacial inceptions and glacials. Then a north - south trending hydrographic front separated the nearshore and offshore waters off Portugal. While offshore waters originated from the North Atlantic Current as indicated by the similarities between the records of IODP Site U1313, ODP Site 980 and MD01-2446, nearshore waters as recorded in core MD03-2699 derived from the Azores Current and thus the subtropical gyre. Except for MIS 12, Azores Current influence seems to be related to eastern boundary system dynamics and not to changes in the Atlantic overturning circulation.