822 resultados para Green manuring.
Resumo:
The United Nations Conference on Sustainable Development (or Rio+20) was conceived at a time of great concern for the health of the world economy. In this atmosphere ‘green economy’ was chosen as one of two central themes for the conference, building on a burgeoning body of literature on the green economy and growth. This research examines the relationship and influence between the double crisis and the rise of ‘greening’ as part of the solution. The aim is to understand what defines and distinguishes the proposals contained in twenty-four sources on the green economy (including policy documents by international agencies and think tanks, and research papers), and what is the meaning and implication of the rising greening agenda for sustainable development as it enters the 21st century. Through a systematic qualitative analysis of textual material, three categories of discourse that can illuminate the meaning and implication of greening are identified: ‘almost business as usual’, ‘greening’, and ‘all change’. An analysis of their relationship with Dryzek's classification of environmental discourse leads to the identification of three interrelated patterns: (1) scarcity and limits, (2) means and ends, and (3) reductionism and unity—which deepen our understanding of the tensions between emerging propositions. The patterns help explain the meaning and implications of greening for sustainable development, revealing an economisation and polarisation of discourses, the persisting weak interpretation of sustainable development, and a tension between the fixing or shifting of dominant socioeconomic paradigms that underpin its conceptualisation.
Resumo:
LGVs are of ever-greater importance in terms of the final delivery of many time-critical, high value goods and are also widely used in industries that provide a wide range of critical support services. There are almost five times as many LGVs as there are HGVs (goods vehicles over 3.5 tonnes gross vehicle weight) currently licensed in Britain. The LGV fleet in Britain is growing at a faster rate than the HGV fleet, and the LGV fleet travels more than twice as many vehicle kilometres each year than the total HGV fleet. LGVs perform a far greater proportion of their total distance travelled in urban areas than HGVs, and consume 25% of the total diesel and 3% of the total petrol used by all motorised road transport vehicles in Britain.
Resumo:
The review illustrates the importance of road movements in goods distribution in urban areas. It highlights the major economic, environmental and social impacts associated with this freight activity and reviews policy options available to those responsible for regulation. A wide range of possible solutions to problems posed by urban freight operations are also covered including approaches related to: consolidation, facilities, vehicle design, information capture and utilisation, and non-road modes.
Resumo:
Thesis (Ph.D.)--University of Washington, 2015
Resumo:
Two natural homogalacturonan (HG) pectins (MW ca. 20 kDa) were isolated from green tea based on their immunomodulatory activity. The crude tea polysaccharides (TPS1 and TPS2) were obtained from green tea leaves by hot water extraction and followed by 40% and 70% ethanol precipitation, respectively. Two homogenous water soluble polysaccharides (TPS1-2a and TPS1-2b) were obtained from TPS1 after purification with gel permeation, which gave a higher phagocytic effect than TPS2. A combination of composition, methylation and configuration analyses, as well as NMR (nuclear magnetic resonance) spectroscopy revealed that TPS1-2a and TPS1-2b were homogalacturonan (HG) pectins consisting of a backbone of 1,4-linked α-d-galacturonic acid (GalA) residues with 28.4% and 26.1% of carboxyl groups as methyl ester, respectively. The immunological assay results demonstrated that TPS1-2, which consisted mainly of HG pectins, showed phagocytosis-enhancing activity in HL-60 cells.
Resumo:
Today more than 99% of plastics are petroleum-based because of availability and cost of the raw material. The durability of these disposed plastics contributes to the environmental problems as waste and their persistence in the environment causes deleterious effects on the ecosystem. Environmental pollution awareness and the demand for green technology have drawn considerable attention of both academia and industry into biodegradable polymers. In this regard green chemistry technology has the potential to provide solution to this problematic issue. Laccase bio-grafting has recently been the focus of green chemistry technologies due to the growing environmental concerns, legal restrictions and increasing availability of scientific knowledge. In the last several years, research covering various applications of laccases has been increased rapidly particularly in the field of grafting. In principle, laccase-assisted graft co-polymerization may impart a variety of new functionalities to a polymer. The modified polymers through grafting have a bright future and their development is practically boundless. In present work, novel biodegradable graft copolymers combining the advantages of bacterial cellulose backbone and PHB side chains will be prepared by introducing enzymatic grafting technique. The present research will be a first step in the biopolymer modification. To date no report has been found in literature explaining the enzymatic grafting of PHAs. The technique would also provide an efficient modulation approach to improve the biodegradability and biocompatibility of the graft copolymer. The newly grafted copolymers will exhibit unique functionalities with wider range of potential applications mainly in tissue engineering, biosensors, pharmaceutical industry (drug delivery systems) and bio-plastics.
Resumo:
Exercising in natural, green environments creates greater improvements in adult's self-esteem than exercise undertaken in urban or indoor settings. No comparable data are available for children. The aim of this study was to determine whether so called ‘green exercise’ affected changes in self-esteem; enjoyment and perceived exertion in children differently to urban exercise. We assessed cardiorespiratory fitness (20 m shuttle-run) and self-reported physical activity (PAQ-A) in 11 and 12 year olds (n = 75). Each pupil completed two 1.5 mile timed runs, one in an urban and another in a rural environment. Trials were completed one week apart during scheduled physical education lessons allocated using a repeated measures design. Self-esteem was measured before and after each trial, ratings of perceived exertion (RPE) and enjoyment were assessed after completing each trial. We found a significant main effect (F (1,74), = 12.2, p<0.001), for the increase in self-esteem following exercise but there was no condition by exercise interaction (F (1,74), = 0.13, p = 0.72). There were no significant differences in perceived exertion or enjoyment between conditions. There was a negative correlation (r = −0.26, p = 0.04) between habitual physical activity and RPE during the control condition, which was not evident in the green exercise condition (r = −0.07, p = 0.55). Contrary to previous studies in adults, green exercise did not produce significantly greater increases in self-esteem than the urban exercise condition. Green exercise was enjoyed more equally by children with differing levels of habitual physical activity and has the potential to engage less active children in exercise.
Resumo:
The article presents the “LungoSolofrana” project, carried out during the course “Urban and Mobility” in the academic year 2009/2010, held during the bachelor in Environmental Engineering at the University of Naples “Federico II”. The work has also been chosen as a finalist at the “UrbanPromo 2010” contest, the urban and territorial marketing event sponsored by the National Institute of Urban Planning and Urbit which was held in Venice in 2010. The project consists in a green mobility proposal, developed with an approach based on the integration of the environmental redevelopment of a portion of river Solofrana, located in the Salerno Province, and of the renewal of seven local stations of the railway line Mercato San Severino – Nocera Inferiore, including the realization of a cycle-path network for the natural environment fruition. Furthermore the work drew attention to the local and regional administration. The main intent of the project is to integrate sustainable mobility themes with the environment recovery in a territory affected by high environmental troubles. The area includes the municipalities of Nocera Inferiore, Nocera Superiore, Mercato San Severino, Castel San Giorgio and Roccapiemonte, situated in Salerno’s province, with a total population about 114.000 (font Demo ISTAT 2010). The area extension is about 84,30 sqkm and it is crossed by river Solofrana that is the central point of the project idea. The intervention strategy is defined in two kinds of actions: internal and external rail station interventions. The external rail station interventions regard the construction of pedestrian-cycle paths with the scope of increasing the spaces dedicated to cyclists and to pedestrians along the river Solofrana sides and to connect the urban areas with the railway station. In this way, it’s also possible to achieve an urban requalification of the interested area. On the other side, the interventions inside the station , according to Transit Oriented Development principles, aim at redeveloping common spaces with the insertion of new activities and at realizing new automatic cycle parks covered by photovoltaic panels. The project proposal consists of the urban regeneration of small railway stations along the route-Nocera-Codola Mercato San Severino in the province of Salerno, through interventions aimed at improving pedestrian accessibility. The project involves in particular the construction of pedestrian paths protected access to the station and connecting with neighboring towns and installation of innovative bike parking stations in elevation, covering surfaces coated with solar panels and spaces information. The project is aimed to propose a new model of sustainable transport for small and medium shifts as an alternative to private transportation
Resumo:
Partner selection is crucial to green supply chain management as the focal firm is responsible for the environmental performance of the whole supply chain. The construction of appropriate selection criteria is an essential, but often neglected pre-requisite in the partner selection process. This paper proposes a three-stage model that combines Dempster-Shafer belief acceptability theory and particle swarm optimization technique for the first time in this application. This enables optimization of both effectiveness, in its consideration of the inter-dependence of a broad range of quantitative and qualitative selection criteria, and efficiency in its use of scarce resources during the criteria construction process to be achieved simultaneously. This also enables both operational and strategic attributes can be selected at different levels of hierarchy criteria in different decision-making environments. The practical efficacy of the model is demonstrated by an application in Company ABC, a large Chinese electronic equipment and instrument manufacturer.
Resumo:
The treatment efficiency of laboratory wastewaters was evaluated and ecotoxicity tests with Chlorella vulgaris were performed on them to assess the safety of their environmental discharge. For chemical oxygen demand wastewaters, chromium (VI), mercury (II) and silver were efficiently removedby chemical treatments.Areduction of ecotoxicitywas achieved; nevertheless, an EC50 (effective concentration that causes a 50% inhibition in the algae growth) of 1.5% (v/v) indicated still high level of ecotoxicity. For chloride determination wastewaters, an efficient reduction of chromium and silver was achieved after treatment. Regarding the reduction of ecotoxicity observed, EC50 increased from 0.059% to 0.5%, only a 0.02% concentration in the aquatic environment would guarantee no effects. Wastewaters containing phenanthroline/iron (II) complex were treated by chemical oxidation. Treatmentwas satisfactory concerning chemical parameters, although an increase in ecotoxicitywas observed (EC50 reduced from 0.31% to 0.21%). The wastes from the kinetic study of persulphate and iodide reaction were treated with sodium bisulphite until colour was removed. Although they did not reveal significant ecotoxicity, only over 1% of the untreated waste produced observable effects over algae. Therefore, ecotoxicity tests could be considered a useful tool not only in laboratory effluents treatment, as shown, but also in hazardous wastewaters management.
Resumo:
Zero-valent iron nanoparticles (nZVIs) are often used in environmental remediation. Their high surface area that is associated with their high reactivity makes them an excellent agent capable of transforming/degrading contaminants in soils and waters. Due to the recent development of green methods for the production of nZVIs, the use of this material became even more attractive. However, the knowledge of its capacity to degrade distinct types of contaminants is still scarce. The present work describes the study of the application of green nZVIs to the remediation of soils contaminated with a common anti-inflammatory drug, ibuprofen. The main objectives of this work were to produce nZVIs using extracts of grape marc, black tea and vine leaves, to verify the degradation of ibuprofen in aqueous solutions by the nZVIs, to study the remediation process of a sandy soil contaminated with ibuprofen using the nZVIs, and to compare the experiments with other common chemical oxidants. The produced nZVIs had nanometric sizes and were able to degrade ibuprofen (54 to 66% of the initial amount) in aqueous solutions. Similar remediation efficiencies were obtained in sandy soils. In this case the remediation could be enhanced (achieving degradation efficiencies above 95%) through the complementation of the process with a catalyzed nZVI Fenton-like reaction. These results indicate that this remediation technology represents a good alternative to traditional and more aggressive technologies.
Resumo:
The effect of boiling (10 minutes) on eleven green vegetables frequently consumed in the Mediterranean diet was evaluated. For that, some physicochemical parameters and the contents of vitamin C, phenolics and carotenoids, as well as the antioxidant activity, were determined in raw and boiled samples. The raw vegetables analysed in this study were good sources of vitamin C, carotenoids and phenolic compounds, with contents ranging from 10.6 to 255.1 mg/100 g, 0.03 to 3.29 mg/100 g and 202.9 to 1010.7 mg/100 g, respectively. Boiling promoted losses in different extensions considering both the different bioactive compounds and the distinct vegetables analysed. Contrary to phenolics (more resistant), vitamin C was the most affected compound. Boiling also originated significant losses in the antioxidant activity of the vegetables. Considering all the parameters analysed, the vegetables most affected by boiling were broccoli and lettuce. The least affected ones were collard and tronchuda cabbage.
Resumo:
A new environmentally friendly Au nanoparticles (Au NPs) synthesis in glycerol by using ultraviolet irradiation and without extra-added stabilizers is described. The synthesis proposed in this work may impact on the non-polluting production of noble nanoparticles with simple chemicals normally found in standard laboratories. These Au NPs were used to modify a carbon paste electrode (CPE) without having to separate them from the reaction medium. This green electrode was used as an electrochemical sensor for the nitrite detection in water. At the optimum conditions the green sensor presented a linear response in the 2.0×10−7–1.5×10−5 M concentration range, a good detection sensitivity (0.268 A L mol−1), and a low detection limit of 2.0×10−7 M of nitrite. The proposed modified green CPE was used to determine nitrite in tap water samples.