995 resultados para Granitic rocks
Resumo:
On the basis of new bulk major and trace element (including REE) as well as Sm-Nd and Rb-Sr isotope data, used in conjunction with available geochronological data, a post-tectonic mafic igneous province and four groups of pre- to syntectonic amphibolite are distinguished in the polymetamorphic Maud Belt of western Dronning Maud Land, East Antarctica. Protoliths of the Group 1 amphibolites are interpreted as volcanic arc mafic intrusions with Archaean to Palaeoproterozoic Nd model ages and depletion in Nb and Ta. Isotopic and lithogeochemical characteristics of this earliest group of amphibolite indicate that the Maud Belt was once an active continental volcanic arc. The most likely position of this arc, for which a late Mesoproterozoic age (c. 1140 Ma) is indicated by available U-Pb single-zircon age data, was on the southeastern margin of the Kaapvaal-Grunehogna Craton. The protoliths of Group 2 amphibolites are attributed to the 1110 Ma Borgmassivet-Umkondo thermal event on the basis of comparable Nd model ages and trace element distributions. Group 3 amphibolite protoliths are characterized by mid-ocean ridge basalt-type REE patterns and low Th/Yb ratios, and they are related to Neoproterozoic extension. Group 4 amphibolite protoliths are distinguished by high Dy/Yb ratios and are attributed to a phase of syntectonic Pan-African magmatism as indicated by Rb-Sr isotope data.
Resumo:
Anisotropy in compressional-wave velocities in sedimentary rocks recovered by DSDP has been recognized by several investigators (Boyce, 1976; Tucholke et al., 1976; Carlson and Christensen, 1977). The anisotropy is also observed at elevated pressures in laboratory experiments, and thus probably persists at depth in some calcareous rocks (Schreiber et al., 1972; Christensen et al., 1973; Carlson and Christensen, 1979). Carlson and Christensen (1979) suggested that the observed velocity anisotropy was produced not by the alignment of cracks but by the alignment of c axes of calcite perpendicular to bedding during compaction, diagenesis, and recrystallization. On DSDP Leg 62, calcareous rocks were recovered from the western Mid-Pacific Mountains (sub-bottom depths of 452-823 m, Site 463) and southern Hess Rise (276-412 m, Site 465). Most of the calcareous rocks are horizontally laminated and color-banded, and ages are early Cenomanian to late Barremian (Site 463 and 465 reports, this volume). The purpose of this study is to confirm the velocity anisotropy in the calcareous rocks and to identify any relationship of anistropy to bulk density, mean velocity, and burial depth.