889 resultados para Glutathione reductase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis comprises two main objectives. The first objective involved the stereochemical studies of chiral 4,6-diamino-1-aryl-1,2-dihydro-s-triazines and an investigation on how the different conformations of these stereoisomers may affect their binding affinity to the enzyme dihydrofolate reductase (DHFR). The ortho-substituted 1-aryl-1,2-dihydro-s-triazines were synthesised by the three component method. An ortho-substitution at the C6' position was observed when meta-azidocycloguanil was decomposed in acid. The ortho-substituent restricts free rotation and this gives rise to atropisomerism. Ortho-substituted 4,6-diamino-1-aryl-2-ethyl-1,2-dihydro-2-methyl-s-triazine contains two elements of chirality and therefore exists as four stereoisomers: (S,aR), (R,aS), (R,aR) and (S,aS). The energy barriers to rotation of these compounds were calculated by a semi-empirical molecular orbital program called MOPAC and they were found to be in excess of 23 kcal/mol. The diastereoisomers were resolved and enriched by C18 reversed phase h.p.l.c. Nuclear overhauser effect experiments revealed that (S,aR) and (R,aS) were the more stable pair of stereoisomers and therefore existed as the major component. The minor diastereoisomers showed greater binding affinity for the rat liver DHFR in in vitro assay. The second objective entailed the investigation into the possibility of retaining DHFR inhibitory activity by replacing the classical diamino heterocyclic moiety with an amidinyl group. 4-Benzylamino-3-nitro-N,N-dimethyl-phenylamidine was synthesised in two steps. One of the two phenylamidines indicated weak inhibition against the rat liver DHFR. This weak activity may be due to the failure of the inhibitor molecule to form strong hydrogen bonds with residue Glu-30 at the active site of the enzyme.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sequence-specific affinity chromatographic isolation of plasmid DNA from crude lysates of E. coli DH5α fermentations is addressed. A zinc finger-GST fusion protein that binds a synthetic oligonucleotide cassette containing the appropriate DNA recognition sequence is described. This cassette was inserted into the Smal site of pUC19 to enable the affinity isolation of the plasmid. It is shown that zinc finger-GST fusion proteins can bind both their DNA recognition sequence and a glutathione-derivatized solid support simultaneously. Furthermore, a simple procedure for the isolation of such plasmids from clarified cell lysates is demonstrated. Cell lysates were clarified by cross-flow Dean vortex microfiltration, and the permeate was incubated with zinc finger-GST fusion protein. The resulting complex was adsorbed directly onto glutathione-Sepharose. Analysis of the glutathione-eluted complex showed that plasmid DNA had been recovered, largely free from contamination by genomic DNA or bacterial cell proteins. © 2002 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. To investigate in parallel the systemic glutathione levels of patients suffering from primary open angle glaucoma (POAG) or normal tension glaucoma (NTG) with comparable functional loss. METHODS. Thirty-four POAG patients, 30 NTG patients, and 53 controls were subjected to blood analysis to detect the level of circulating glutathione in its reduced (GSH) and oxidized (GSSG) forms. Systemic blood pressure (BP) and ocular perfusion pressure (OPP) parameters were also determined. RESULTS. Independent of age, POAG and NTG patients demonstrated significantly lower GSH and t-GSH levels than age-matched controls (P < 0.001). Additionally, a lower redox index was found, but in POAG patients only, in comparison to both NTG and control groups (P = 0.020). GSSG levels were, however, similar between all study groups (P > 0.05). CONCLUSIONS. This study demonstrates, for the first time, that both POAG and NTG patients exhibit lower GSH and t-GSH levels than age-matched controls, indicating a similar general compromise of the antioxidant defense systems may exist in both conditions. © 2013 The Association for Research in Vision and Ophthalmology, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production of high levels of reactive oxygen species by neutrophils is associated with the local and systemic destructive phenotype found in the chronic inflammatory disease periodontitis. In the present study, we investigated the ability of sulforaphane (SFN) to restore cellular glutathione levels and reduce the hyperactivity of circulating neutrophils associated with chronic periodontitis. Using differentiated HL60 cells as a neutrophil model, here we show that generation of extracellular O2 . - by the nicotinamide adenine dinucleotide (NADPH) oxidase complex is increased by intracellular glutathione depletion. This may be attributed to the upregulation of thiol regulated acid sphingomyelinase driven lipid raft formation. Intracellular glutathione was also lower in primary neutrophils from periodontitis patients and, consistent with our previous findings, patients neutrophils were hyper-reactive to stimuli. The activity of nuclear factor erythroid-2-related factor 2 (Nrf2), a master regulator of the antioxidant response, is impaired in circulating neutrophils from chronic periodontitis patients. Although patients' neutrophils exhibit a low reduced glutathione (GSH)/oxidised glutathione (GSSG) ratio and a higher total Nrf2 level, the DNA-binding activity of nuclear Nrf2 remained unchanged relative to healthy controls and had reduced expression of glutamate cysteine ligase catalytic (GCLC), and modifier (GCLM) subunit mRNAs, compared to periodontally healthy subjects neutrophils. Pre-treatment with SFN increased expression of GCLC and GCM, improved intracellular GSH/GSSG ratios and reduced agonist-activated extracellular O2 . - production in both dHL60 and primary neutrophils from patients with periodontitis and controls. These findings suggest that a deficiency in Nrf2-dependent pathways may underpin susceptibility to hyper-reactivity in circulating primary neutrophils during chronic periodontitis. © 2013 Dias et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: This pilot study aimed to investigate systemic and retinal vascular function and their relationship to circulatory markers of cardiovascular risk in early age-related macular degeneration (AMD) patients without any already diagnosed systemic vascular pathologies. Methods: Fourteen patients diagnosed with early AMD and 14 age- and gender-matched healthy controls underwent blood pressure, carotid intima-media thickness (C-IMT) and peripheral arterial stiffness measurements. Retinal vascular reactivity was assessed by means of dynamic retinal vessel analysis (DVA) using a modified protocol. Blood analyses were conducted for glutathione levels and plasma levels of total cholesterol (CHOL), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG). Results: The AMD patients showed significantly greater C-IMT (p = 0.029) and augmentation index (AIx) (p = 0.042) than the age-matched controls. In addition, they demonstrated a shallower retinal arterial dilation slope (Slope AD) (p = 0.005) and a longer retinal venous reaction time (RT) to flickering light (p = 0.026). Blood analyses also revealed that AMD patients exhibited higher oxidized glutathione (GSSG) (p = 0.024), lower redox index (p = 0.043) and higher LDL-C (p = 0.033) levels than the controls. Venous RT parameter correlated positively with blood GSSG levels (r = 0.58, p = 0.038) in AMD subjects, but not in the controls (p > 0.05). Conclusions: Patients diagnosed with early AMD exhibit signs of systemic and retinal vascular alterations that correlated with known risk markers for future cardiovascular morbidity. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resistance to pentavallent antimonial (Sb-v) agents such as sodium stibogluconate (SSG) is creating a major problem in the treatment of visceral leishmaniasis. In the present study the in vivo susceptibilities of Leishmania donovani strains, typed as SSG resistant (strain 200011) or SSG sensitive (strain 200016) on the basis of their responses to a single SSG dose of 300 mg of Sb-v/kg of body weight, to other antileishmanial drugs were determined. In addition, the role of glutathione in SSG resistance was investigated by determining the influence on SSG treatment of concomitant treatment with a nonionic surfactant vesicle formulation of buthionine sulfoximine (BSO), a specific inhibitor of the enzyme gamma-glutamylcysteine synthetase which is involved in glutathione biosynthesis, and SSG, on the efficacy of SSG treatment. L. donovani strains that were SSG resistant (strain 200011) and SSG sensitive (strain 200016) were equally susceptible to in vivo treatment with miltefosine, paromomycin and amphotericin B (Fungizone and AmBisome) formulations. Combined treatment with SSG and vesicular BSO significantly increased the in vivo efficacy of SSG against both the 200011 and the 200016 L. donovani strains. However, joint treatment that included high SSG doses was unexpectedly associated with toxicity. Measurement of glutathione levels in the spleens and livers of treated mice showed that the ability of the combined therapy to inhibit glutathione levels was also dependent on the SSG dose used and that the combined treatment exhibited organ-dependent effects. The SSG resistance exhibited by the L. donovani strains was not associated with cross-resistance to other classes of compounds and could be reversed by treatment with an inhibitor of glutathione biosynthesis, indicating that clinical resistance to antimonial drugs should not affect the antileishmanial efficacies of alternative drugs. In addition, it should be possible to identify a treatment regimen that could reverse antimony resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relationships among quality factors in retailed free-range, corn-fed, organic, and conventional chicken breasts (9) were modeled using chemometric approaches. Use of principal component analysis (PCA) to neutral lipid composition data explained the majority (93%) of variability (variance) in fatty acid contents in 2 significant multivariate factors. PCA explained 88 and 75% variance in 3 factors for, respectively, flame ionization detection (FID) and nitrogen phosphorus (NPD) components in chromatographic flavor data from cooked chicken after simultaneous distillation extraction. Relationships to tissue antioxidant contents were modeled. Partial least square regression (PLS2), interrelating total data matrices, provided no useful models. By using single antioxidants as Y variables in PLS (1), good models (r2 values > 0.9) were obtained for alpha-tocopherol, glutathione, catalase, glutathione peroxidase, and reductase and FID flavor components and among the variables total mono and polyunsaturated fatty acids and subsets of FID, and saturated fatty acid and NPD components. Alpha-tocopherol had a modest (r2 = 0.63) relationship with neutral lipid n-3 fatty acid content. Such factors thus relate to flavor development and quality in chicken breast meat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elevated total cholesterol in midlife has been associated with increased risk of dementia in later life. We have previously shown that low-density lipoprotein (LDL) is more oxidized in the plasma of dementia patients, although total cholesterol levels are not different from those of age-matched controls. β-Amyloid (Aβ) peptide, which accumulates in Alzheimer disease (AD), arises from the initial cleavage of amyloid precursor protein by β-secretase-1 (BACE1). BACE1 activity is regulated by membrane lipids and raft formation. Given the evidence for altered lipid metabolism in AD, we have investigated a mechanism for enhanced Aβ production by SH-SY5Y neuronal-like cells exposed to oxidized LDL (oxLDL). The viability of SH-SY5Y cells exposed to 4 μg oxLDL and 25 μM 27-hydroxycholesterol (27OH-C) was decreased significantly. Lipids, but not proteins, extracted from oxLDL were more cytotoxic than oxLDL. In parallel, the ratio of reduced glutathione (GSH) to oxidized glutathione was decreased at sublethal concentrations of lipids extracted from native and oxLDL. GSH loss was associated with an increase in acid sphingomyelinase (ASMase) activity and lipid raft formation, which could be inhibited by the ASMase inhibitor desipramine. 27OH-C and total lipids from LDL and oxLDL independently increased Aβ production by SH-SY5Y cells, and Aβ accumulation could be inhibited by desipramine and by N-acetylcysteine. These data suggest a mechanism whereby oxLDL lipids and 27OH-C can drive Aβ production by GSH depletion, ASMase-driven membrane remodeling, and BACE1 activation in neuronal cells. © 2014 The Authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study the interaction of the preservative sodium chlorite with unsaturated lipids and glutathione was investigated, in comparison with peroxides, sodium hypochlorite, and benzalkonium chloride. The aim was to determine whether the action of sodium chlorite could involve membrane lipid damage or antioxidant depletion, and how this related to toxicity in both mammalian and microbial cells. The treatment of phospholipids with chlorite yielded low levels of hydroperoxides, but sodium chlorite oxidized the thiol-containing antioxidant glutathione to its disulfide form very readily in vitro, with a 1:4 oxidant:GSH stoichiometry. In cultured cells, sodium chlorite also caused a substantial depletion of intracellular glutathione, whereas lipid oxidation was not very prominent. Sodium chlorite had a lower toxicity to ocular mammalian cells than benzalkonium chloride, which could be responsible for the different effects of long-term application in the eye. The fungal cells, which were most resistant to sodium chlorite, maintained higher percentage levels of intracellular glutathione during treatment than the mammalian cells. The results show that sodium chlorite can cause oxidative stress in cells, and suggest that cell damage is more likely to be due to interaction with thiol compounds than with cell membrane lipids. The study also provides important information about the differential resistance of ocular cells and microbes to various preservatives and oxidants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arsenic trioxide (ATO) has been tested in relapsed/refractory multiple myeloma with limited success. In order to better understand drug mechanism and resistance pathways in myeloma we generated an ATO-resistant cell line, 8226/S-ATOR05, with an IC50 that is 2–3-fold higher than control cell lines and significantly higher than clinically achievable concentrations. Interestingly we found two parallel pathways governing resistance to ATO in 8226/S-ATOR05, and the relevance of these pathways appears to be linked to the concentration of ATO used. We found changes in the expression of Bcl-2 family proteins Bfl-1 and Noxa as well as an increase in cellular glutathione (GSH) levels. At low, clinically achievable concentrations, resistance was primarily associated with an increase in expression of the anti-apoptotic protein Bfl-1 and a decrease in expression of the pro-apoptotic protein Noxa. However, as the concentration of ATO increased, elevated levels of intracellular GSH in 8226/S-ATOR05 became the primary mechanism of ATO resistance. Removal of arsenic selection resulted in a loss of the resistance phenotype, with cells becoming sensitive to high concentrations of ATO within 7 days following drug removal, indicating changes associated with high level resistance (elevated GSH) are dependent upon the presence of arsenic. Conversely, not until 50 days without arsenic did cells once again become sensitive to clinically relevant doses of ATO, coinciding with a decrease in the expression of Bfl-1. In addition we found cross-resistance to melphalan and doxorubicin in 8226/S-ATOR05, suggesting ATO-resistance pathways may also be involved in resistance to other chemotherapeutic agents used in the treatment of multiple myeloma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.