939 resultados para Geometry, Algebraic.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Hamiltonian formulation of the teleparallel equivalent of general relativity is considered. Definitions of energy, momentum and angular momentum of the gravitational field arise from the integral form of the constraint equations of the theory. In particular, the gravitational energy-momentum is given by the integral of scalar densities over a three-dimensional spacelike hypersurface. The definition for the gravitational energy is investigated in the context of the Kerr black hole. In the evaluation of the energy contained within the external event horizon of the Kerr black hole, we obtain a value strikingly close to the irreducible mass of the latter. The gravitational angular momentum is evaluated for the gravitational field of a thin, slowly rotating mass shell. © 2002 The American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the context of the hamiltonian formulation of the teleparallel equivalent of general relativity we compute the gravitational energy of Kerr and Kerr Anti-de Sitter (Kerr-AdS) space-times. The present calculation is carried out by means of an expression for the energy of the gravitational field that naturally arises from the integral form of the constraint equations of the formalism. In each case, the energy is exactly computed for finite and arbitrary spacelike two-spheres, without any restriction on the metric parameters. In particular, we evaluate the energy at the outer event horizon of the black holes. © SISSA/ISAS 2003.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the surface geometry of the spherical even-even Ca, Ni, Sn and Pb nuclei using two approaches: The relativistic Dirac-Hartree-Bogoliubov one with several parameter sets and the non-relativistic Hartree-Fock-Bogoliubov one with the Gogny force. The proton and neutron density distributions are fitted to two-parameter Fermi density distributions to obtain the half-density radii and diffuseness parameters. Those parameters allow us to determine the nature of the neutron skins predicted by the models. The calculations are compared with existing experimental data. © 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents specific cutting energy measurements as a function of the cutting speed and tool cutting edge geometry. The experimental work was carried out on a vertical CNC machining center with 7,500 rpm spindle rotation and 7.5 kW power. Hardened steels ASTM H13 (50 HRC) were machined at conventional cutting speed and high-speed cutting (HSC). TiN coated carbides with seven different geometries of chip breaker were applied on dry tests. A special milling tool holder with only one cutting edge was developed and the machining forces needed to calculate the specific cutting energy were recorded using a piezoelectric 4-component dynamometer. Workpiece roughness and chip formation process were also evaluated. The results showed that the specific cutting energy decreased 15.5% when cutting speed was increased up to 700%. An increase of 1 °in tool chip breaker chamfer angle lead to a reduction in the specific cutting energy about 13.7% and 28.6% when machining at HSC and conventional cutting speed respectively. Furthermore the workpiece roughness values evaluated in all test conditions were very low, closer to those of typical grinding operations (∼0.20 μm). Probable adiabatic shear occurred on chip segmentation at HSC Copyright © 2007 by ABCM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the wide diversity of unknown organisms in the environment, 99% of them cannot be grown in traditional culture medium in laboratories. Therefore, metagenomics projects are proposed to study microbial communities present in the environment, from molecular techniques, especially the sequencing. Thereby, for the coming years it is expected an accumulation of sequences produced by these projects. Thus, the sequences produced by genomics and metagenomics projects present several challenges for the treatment, storing and analysis such as: the search for clones containing genes of interest. This work presents the OCI Metagenomics, which allows defines and manages dynamically the rules of clone selection in metagenomic libraries, thought an algebraic approach based on process algebra. Furthermore, a web interface was developed to allow researchers to easily create and execute their own rules to select clones in genomic sequence database. This software has been tested in metagenomic cosmid library and it was able to select clones containing genes of interest. Copyright 2010 ACM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After reviewing the Lounesto spinor field classification, according to the bilinear covariants associated to a spinor field, we call attention and unravel some prominent features involving unexpected properties about spinor fields under such classification. In particular, we pithily focus on the new aspects - as well as current concrete possibilities. They mainly arise when we deal with some non-standard spinor fields concerning, in particular, their applications in physics. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The external detector method (EDM) is a widely used technique in fission track thermochronology (FTT) in which two different minerals are concomitantly employed: spontaneous tracks are observed in apatite and induced ones in the muscovite external detector. They show intrinsic differences in detection and etching properties that should be taken into account. In this work, new geometry factor values, g, in apatite, were obtained by directly measuring the ρed/ρis ratios and independently determined [GQR]ed/is values through the measurement of projected lengths. Five mounts, two of which were large area prismatic sections and three samples composed of random-orientation pieces have been used to determine the g-values. A side effect of applying EDM is that the value of the initial confined induced fission track, L0, is not measured in routine analyses. The L 0-value is an important parameter to quantify with good confidence the degree of annealing of the spontaneous fission tracks in unknown-age samples, and is essential for accurate thermal history modeling. The impact of using arbitrary L0-values on the inference of sample thermal history is investigated and discussed. The measurement of the L0-value for each sample to be dated using an extra irradiated apatite mount is proposed. This extra mount can be also used for determining the g value as an extension of the ρed/ρis ratio method. Eight apatite samples from crystalline basement, with grains at random orientation, were used to determine the g-values. The results found are statistically in agreement with the values found for apatite samples (from Durango, Mexico) measured in prismatic section and also measured at random orientation. There was no observable variation in efficiency regarding crystal orientation, showing that it is relatively safe using non-prismatic grains, especially in samples with paucity of grains, as it is the case of most basin samples. Implications for the ζ-calibration and for the calibration of the direct (spectrometer-based) fission-track dating are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Kaup-Newell (KN) hierarchy contains the derivative nonlinear Schrödinger equation (DNLSE) amongst others interesting and important nonlinear integrable equations. In this paper, a general higher grading affine algebraic construction of integrable hierarchies is proposed and the KN hierarchy is established in terms of an Ŝℓ2Kac-Moody algebra and principal gradation. In this form, our spectral problem is linear in the spectral parameter. The positive and negative flows are derived, showing that some interesting physical models arise from the same algebraic structure. For instance, the DNLSE is obtained as the second positive, while the Mikhailov model as the first negative flows. The equivalence between the latter and the massive Thirring model is also explicitly demonstrated. The algebraic dressing method is employed to construct soliton solutions in a systematic manner for all members of the hierarchy. Finally, the equivalence of the spectral problem introduced in this paper with the usual one, which is quadratic in the spectral parameter, is achieved by setting a particular automorphism of the affine algebra, which maps the homogeneous into principal gradation. © 2013 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Educação Matemática - IGCE

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The implementation of local geodetic networks for georeferencing of rural properties has become a requirement after publication of the Georeferencing Technical Standard by INCRA. According to this standard, the maximum distance of baselines to GNSS L1 receivers is of 20 km. Besides the length of the baseline, the geometry and the number of geodetic control stations are other factors to be considered in the implementation of geodetic networks. Thus, this research aimed to examine the influence of baseline lengths higher than the regulated limit of 20 km, the geometry and the number of control stations on quality of local geodetic networks for georeferencing, and also to demonstrate the importance of using specific tests to evaluate the solution of ambiguities and on the quality of the adjustment. The results indicated that the increasing number of control stations has improved the quality of the network, the geometry has not influenced on the quality and the baseline length has influenced on the quality; however, lengths higher than 20 km has not interrupted the implementation, with GPS L1 receiver, of the local geodetic network for the purpose of georeferencing. Also, the use of different statistical tests, both for the evaluation of the resolution of ambiguities and for the adjustment, have enabled greater clearness in analyzing the results, which allow that unsuitable observations may be eliminated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a study case in which a geosynthetic-reinforced soil (GRS) structure was used to rebuild a 12 m high slope after its failure. The failed slope is located between the parking lot of a private company and a public school. Due to surrounding structures restrictions, this project required a solution with rapidity in execution. In addition, as a requirement established by its owner, this structure should recover the original geometry of the slope. Besides the importance regarding surrounding constructions, an interesting aspect of this study case relies on the versatility of geosynthetic materials. A woven geotextile was used as reinforcement. Five other geosynthetic materials were used in this study case. Facing comprised a geocell filled with local soil cover and grass mats, resulting in a green facing. A geonet was used to hold the grass mats in place before grass roots development. Regarding the drainage system, geocomposite drains and geopipes were installed to drain subsurface water. A nonwoven geotextile was used as filter in drainage trenches, which were placed near the structure toe. Additionally to the GRS structure, the lower portion of the slope was reinforced with soil nailing technique. The face of the nailed soil portion was covered with sandbags and shotcrete. It emphasizes the flexibility of GRS structures regarding their application with other technical options in Geotechnical Engineering. The economic aspect of this study case also deserves attention. It did not require soil transportation and other design and construction steps, e.g. concrete structures design and construction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: This study evaluated the effect of quantity of resin composite, C-factor, and geometry in Class V restorations on shrinkage stress after bulk fill insertion of resin using two-dimensional finite element analysis.Methods: An image of a buccolingual longitudinal plane in the middle of an upper first premolar and supporting tissues was used for modeling 10 groups: cylindrical cavity, erosion, and abfraction lesions with the same C-factor (1.57), a second cylindrical cavity and abfraction lesion with the same quantity of resin (QR) as the erosion lesion, and then all repeated with a bevel on the occlusal cavosurface angle. The 10 groups were imported into Ansys 13.0 for two-dimensional finite element analysis. The mesh was built with 30,000 triangle and square elements of 0.1 mm in length for all the models. All materials were considered isotropic, homogeneous, elastic, and linear, and the resin composite shrinkage was simulated by thermal analogy. The maximum principal (MPS) and von Mises stresses (VMS) were analyzed for comparing the behavior of the groups.Results: Different values of angles for the cavosurface margin in enamel and dentin were obtained for all groups and the higher the angle, the lower the stress concentration. When the groups with the same C-factor and QR were compared, the erosion shape cavity showed the highest MPS and VMS values, and abfraction shape, the lowest. A cavosurface bevel decreased the stress values on the occlusal margin. The geometry factor overcame the effects of C-factor and QR in some situations.Conclusion: Within the limitations of the current methodology, it is possible to conclude that the combination of all variables studied influences the stress, but the geometry is the most important factor to be considered by the operator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)