996 resultados para Geochemical Survey
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The U.S. Geological Survey is working to define a hydroclimatic data network. The Geological Survey collects stream discharge data at more than 7000 sites throughout the United States. Many of these stations are operated to supply information about specific activities such as flood control, irrigation projects, or hydropower generation. As a beginning, the Geological Survey will attempt to identify stations that represent natural streamflow. Several lists of stations representing "natural" streamflow have been complied in the past. While there is some overlap among these lists, a consistent compilation is preferred. The present effort is to produce one list identifying those stations having periods of record which would be suitable for mesoscale climatic analyses.
Resumo:
Biomass estimates of several species of Alaskan rockfishes exhibit large interannual variations. Because rockfishes are long lived and relatively slow growing, large, short-term shifts in population abundance are not likely. We attribute the variations in biomass estimates to the high variability in the spatial distribution of rockfishes that is not well accounted for by the survey design currently used. We evaluated the performance of an experimental survey design, the Trawl and Acoustic Presence/Absence Survey (TAPAS), to reduce the variability in estimated biomass for Pacific ocean perch (Sebastes alutus). Analysis of archived acoustic backscatter data produced an acoustic threshold for delineating potential areas of high (“patch”) and low (“background”) catch per unit of effort (CPUE) in real time. In 2009, we conducted a 12-day TAPAS near Yakutat, Alaska. We completed 59 trawls at 19 patch stations and 40 background stations. The design performed well logistically, and Pacific ocean perch (POP) accounted for 55% of the 31 metric tons (t) of the catch from this survey. The resulting estimates of rockfish biomass were slightly less precise than estimates from simple random sampling. This difference in precision was due to the weak relationship of CPUE to mean volume backscattering and the relatively low variability of POP CPUE encountered. When the data were re-analyzed with a higher acoustic threshold than the one used in the field study, performance was slightly better with this revised design than with the original field design. The TAPAS design could be made more effective by establishing a stronger link between acoustic backscatter and CPUE and by deriving an acoustic threshold that allows better identification of backscatter as that from the target species.
Resumo:
We examined the reactions of fishes to a manned submersible and a remotely operated vehicle (ROV) during surveys conducted in habitats of rock and mud at depths of 30–408 m off central California in 2007. We observed 26 taxa for 10,550 fishes observed from the submersible and for 16,158 fishes observed from the ROV. A reaction was defined as a distinct movement of a fish that, for a benthic or hovering individual, was greater than one body length away from its initial position or, for a swimming individual, was a change of course or speed. Of the observed fishes, 57% reacted to the ROV and 11% reacted to the submersible. Aggregating species and those species initially observed off the seafloor reacted most often to both vehicles. Fishes reacted more often to each vehicle when they were >1 m above the seafloor (22% of all fishes >1 m above the seafloor reacted to the submersible and 73% to the ROV) than when they were in contact with the seafloor (2% of all reactions to the submersible and 18% to the ROV). Fishes reacted by swimming away from both vehicles rather than toward them. Consideration of these reactions can inform survey designs and selection of survey tools and can, thereby, increase the reliability of fish assemblage metrics (e.g., abundance, density, and biomass) and assessments of fish and habitat associations.
Influence of soak time and fish accumulation on catches of reef fishes in a multispecies trap survey
Resumo:
Catch rates from fishery-independent surveys often are assumed to vary in proportion to the actual abundance of a population, but this approach assumes that the catchability coefficient (q) is constant. When fish accumulate in a gear, the rate at which the gear catches fish can decline, and, as a result, catch asymptotes and q declines with longer fishing times. We used data from long-term trap surveys (1990–2011) in the southeastern U.S. Atlantic to determine whether traps saturated for 8 reef fish species because of the amount of time traps soaked or the level of fish accumulation (the total number of individuals of all fish species caught in a trap). We used a delta-generalized-additive model to relate the catch of each species to a variety of predictor variables to determine how catch was influenced by soak time and fish accumulation after accounting for variability in catch due to the other predictor variables in the model. We found evidence of trap saturation for all 8 reef fish species examined. Traps became saturated for most species across the range of soak times examined, but trap saturation occurred for 3 fish species because of fish accumulation levels in the trap. Our results indicate that, to infer relative abundance levels from catch data, future studies should standardize catch or catch rates with nonlinear regression models that incorporate soak time, fish accumulation, and any other predictor variable that may ultimately influence catch. Determination of the exact mechanisms that cause trap saturation is a critical need for accurate stock assessment, and our results indicate that these mechanisms may vary considerably among species.
Resumo:
The offshore shelf and canyon habitats of the OCNMS are areas of high primary productivity and biodiversity that support extensive groundfish fisheries. Recent acoustic surveys conducted in these waters have indicated the presence of hard-bottom substrates believed to harbor unique deep-sea coral and sponge assemblages. Such fauna are often associated with shallow tropical waters, however an increasing number of studies around the world have recorded them in deeper, cold-water habitats in both northern and southern latitudes. These habitats are of tremendous value as sites of recruitment for commercially important fishes. Yet, ironically, studies have shown how the gear used in offshore demersal fishing, as well as other commercial operations on the seafloor, can cause severe physical disturbances to resident benthic fauna. Due to their exposed structure, slow growth and recruitment rates, and long life spans, deep-sea corals and sponges may be especially vulnerable to such disturbances, requiring very long periods to recover. Potential effects of fishing and other commercial operations in such critical habitats, and the need to define appropriate strategies for the protection of these resources, have been identified as a high-priority management issue for the sanctuary.
Resumo:
The assessment of emerging risks in the aquatic environment is a major concern and focus of environmental science (Daughton and Ternes, 1999). One significant class of chemicals that has received relatively little attention until recently are the human use pharmaceuticals. In 2004, an estimated 2.6 billion prescriptions were written for the top 300 pharmaceuticals in the U.S. (RxList, 2005). Mellon et al. (2001) estimated that 1.4 million kg of antimicrobials are used in human medicine every year. The use of pharmaceuticals is also estimated to be on par with agrochemicals (Daughton and Ternes, 1999). Unlike agrochemicals (e.g., pesticides) which tend to be delivered to the environment in seasonal pulses, pharmaceuticals are continuously released through the use/excretion and disposal of these chemicals, which may produce the same exposure potential as truly persistent pollutants. Human use pharmaceuticals can enter the aquatic environment through a number of pathways, although the main one is thought to be via ingestion and subsequent excretion by humans (Thomas and Hilton, 2004). Unused pharmaceuticals are typically flushed down the drain or wind up in landfills (Jones et al. 2001).
Resumo:
Since 2001, NOAA National Centers for Coastal Ocean Science (NCCOS), Center for Coastal Monitoring and Assessment’s (CCMA) Biogeography Branch (BB) has been working with federal and territorial partners to characterize, monitor, and assess the status of the marine environment across the U.S. Virgin Islands (USVI). At the request of the St. Thomas Fisherman’s Association (STFA) and NOAA Marine Debris Program, CCMA BB developed new partnerships and novel technologies to scientifically assess the threat from derelict fish traps (DFTs). Traps are the predominant gear used for finfish and lobster harvesting in St. Thomas and St. John. Natural phenomena (ground swells, hurricanes) and increasing competition for space by numerous user groups have generated concern about increasing trap loss and the possible ecological, as well as economic, ramifications. Prior to this study, there was a general lack of knowledge regarding derelict fish traps in the Caribbean. No spatially explicit information existed regarding fishing effort, abundance and distribution of derelict traps, the rate at which active traps become derelict, or areas that are prone to dereliction. Furthermore, there was only limited information regarding the impacts of derelict traps on natural resources including ghost fishing. This research identified two groups of fishing communities in the region: commercial fishing that is most active in deeper waters (30 m and greater) and an unknown number of unlicensed subsistence and or commercial fishers that fish closer to shore in shallower waters (30 m and less). In the commercial fishery there are an estimated 6,500 active traps (fish and lobster combined). Of those traps, nearly 8% (514) were reported lost during the 2008-2010 period. Causes of loss/dereliction include: movement of the traps or loss of trap markers due to entanglement of lines by passing vessels; theft; severe weather events (storms, large ground swells); intentional disposal by fishermen; traps becoming caught on various bottom structures (natural substrates, wrecks, etc.); and human error.
Resumo:
Remotely operated vehicle (ROV) surveys were conducted from NOAA’s state-of-the-art Fisheries Survey Vessel (FSV) Bell M. Shimada during a six-day transit November 1-5, 2010 between San Diego, CA and Seattle, WA. The objective of this survey was to locate and characterize deep-sea coral and sponge ecosystems at several recommended sites in support of NOAA’s Coral Reef Conservation Program. Deep-sea corals and sponges were photographed and collected whenever possible using the Southwest Fisheries Science Center’s (SWFSC) Phantom ROV ‘Sebastes’ (Fig. 1). The surveyed sites were recommended by National Marine Sanctuary (NMS) scientists at Monterey Bay NMS, Gulf of the Farallones NMS, and Olympic Coast NMS (Fig. 2). The specific sites were: Sur Canyon, The Football, Coquille Bank, and Olympic Coast NMS. During each dive, the ROV collected digital still images, video, navigation, and along-track conductivity-temperature-depth (CTD), and optode data. Video and high-resolution photographs were used to quantify abundance of corals, sponges, and associated fishes and invertebrates to the lowest practicable taxonomic level, and also to classify the seabed by substrate type. A reference laser system was used to quantify area searched and estimate the density of benthic fauna.
Resumo:
Coral ( Porites astreoides ) from eight sites in southwest Puerto Rico were analyzed for approximately 150 chemical contaminants, to provide a preliminary characterization of environmental contamination in the corals, and assess the relationships between chemical contamination in corals and adjacent sediments. Overall, the concentration of PAHs (polycyclic aromatic hydrocarbons) and PCBs (polychlorinated biphenyls) detected in the limited number of coral samples collected were comparable to concentrations found in sediments. However, the concentration of a chemical contaminant (e.g., PAHs) in the corals at a site was often different from what was found in adjacent sediments. The level of PCBs and DDT (dichlorodiphenyltrichloroethane) in the corals appeared higher just outside of Guanica Bay, and there was some evidence of a downstream concentration gradient for these two contaminant classes. The trace elements copper and zinc were frequently detected in Porites astreoides , and the concentrations were usually comparable to those found in adjacent sediments. Chromium was an exception in that it was not detected in any of the coral samples analyzed, although it was detected in all of the sediment samples.
Resumo:
Nonindigenous species (NIS) are a major threat to marine ecosystems, with possible dramatic effects on biodiversity, biological productivity, habitat structure and fisheries. The Papahānaumokuākea Marine National Monument (PMNM) has taken active steps to mitigate the threats of NIS in Northwestern Hawaiian Islands (NWHI). Of particular concern are the 13 NIS already detected in NWHI and two invasive species found among the main Hawaiian Islands, snowflake coral (Carijoa riseii) and a red alga (Hypnea musciformis). Much of the information regarding NIS in NWHI has been collected or informed by surveys using conventional SCUBA or fishing gear. These technologies have significant drawbacks. SCUBA is generally constrained to depths shallower than 40 m and several NIS of concern have been detected well below this limit (e.g., L. kasmira – 256 m) and fishing gear is highly selective. Consequently, not all habitats or species can be properly represented. Effective management of NIS requires knowledge of their spatial distribution and abundance over their entire range. Surveys which provide this requisite information can be expensive, especially in the marine environment and even more so in deepwater. Technologies which minimize costs, increase the probability of detection and are capable of satisfying multiple objectives simultaneously are desired. This report examines survey technologies, with a focus on towed camera systems (TCSs), and modeling techniques which can increase NIS detection and sampling efficiency in deepwater habitats of NWHI; thus filling a critical data gap in present datasets. A pilot study conducted in 2008 at French Frigate Shoals and Brooks Banks was used to investigate the application of TCSs for surveying NIS in habitats deeper than 40 m. Cost and data quality were assessed. Over 100 hours of video was collected, in which 124 sightings of NIS were made among benthic habitats from 20 to 250 m. Most sightings were of a single cosmopolitan species, Lutjanus kasmira, but Cephalopholis argus, and Lutjanus fulvus, were also detected. The data expand the spatial distributions of observed NIS into deepwater habitats, identify algal plain as an important habitat and complement existing data collected using SCUBA and fishing gear. The technology’s principal drawback was its inability to identify organisms of particular concern, such as Carijoa riseii and Hypnea musciformis due to inadequate camera resolution and inability to thoroughly inspect sites. To solve this issue we recommend incorporating high-resolution cameras into TCSs, or using alternative technologies, such as technical SCUBA diving or remotely operated vehicles, in place of TCSs. We compared several different survey technologies by cost and their ability to detect NIS and these results are summarized in Table 3.
Resumo:
This protocol was developed by the Biogeography Branch of NOAA’s Center for Coastal Monitoring and Assessment to support invasive species research by the Papahānaumokuākea Marine National Monument. The protocol’s objective is to detect Carijoa riisei and Hypnea musciformis in deepwater habitats using visual surveys by technical divers. Note: This protocol is designed to detect the presence or absence of invasive species. A distinct protocol is required to collect information on abundance and impact, or monitor changes over time.
Resumo:
The impact of recent changes in climate on the arctic environment and its ecosystems appear to have a dramatic affect on natural populations (National Research Council Committee on the Bering Sea Ecosystem 1996) and pose a serious threat to the continuity of indigenous arctic cultures that are dependent on natural resources for subsistence (Peterson D. L., Johnson 1995). In the northeast Pacific, winter storms have intensified and shifted southward causing fundamental changes in sea surface temperature patterns (Beamish 1993, Francis et al. 1998). Since the mid 1970’s surface waters of the central basin of the Gulf of Alaska (GOA) have warmed and freshened with a consequent increase in stratification and reduced winter entrainment of nutrients (Stabeno et al. 2004). Such physical changes in the structure of the ocean can rapidly affect lower trophic levels and indirectly affect fish and marine mammal populations through impacts on their prey (Benson and Trites 2002). Alaskan natives expect continued and perhaps accelerating changes in resources due to global warming (DFO 2006).and want to develop strategies to cope with their changing environment.
Resumo:
The relative abundance of Bristol Bay red king crab (Paralithodes camtschaticus) is estimated each year for stock assessment by using catch-per-swept-area data collected on the Alaska Fisheries Science Center’s annual eastern Bering Sea bottom trawl survey. To estimate survey trawl capture efficiency for red king crab, an experiment was conducted with an auxiliary net (fitted with its own heavy chain-link footrope) that was attached beneath the trawl to capture crabs escaping under the survey trawl footrope. Capture probability was then estimated by fitting a model to the proportion of crabs captured and crab size data. For males, mean capture probability was 72% at 95 mm (carapace length), the size at which full vulnerability to the survey trawl is assigned in the current management model; 84.1% at 135 mm, the legal size for the fishery; and 93% at 184 mm, the maximum size observed in this study. For females, mean capture probability was 70% at 90 mm, the size at which full vulnerability to the survey trawl is assigned in the current management model, and 77% at 162 mm, the maximum size observed in this study. The precision of our estimates for each sex decreased for juveniles under 60 mm and for the largest crab because of small sample sizes. In situ data collected from trawl-mounted video cameras were used to determine the importance of various factors associated with the capture of individual crabs. Capture probability was significantly higher when a crab was standing when struck by the footrope, rather than crouching, and higher when a crab was hit along its body axis, rather than from the side. Capture probability also increased as a function of increasing crab size but decreased with increasing footrope distance from the bottom and when artificial light was provided for the video camera.
Resumo:
In trawl surveys a cluster of fish are caught at each station, and fish caught together tend to have more similar characteristics, such as length, age, stomach contents etc., than those in the entire population. When this is the case, the effective sample size for estimates of the frequency distribution of a population characteristic can, therefore, be much smaller than the number of fish sampled during a survey. As examples, it is shown that the effective sample size for estimates of length-frequency distributions generated by trawl surveys conducted in the Barents Sea, off Namibia, and off South Africa is on average approximately one fish per tow. Thus many more fish than necessary are measured at each station (location). One way to increase the effective sample size for these surveys and, hence, increase the precision of the length-frequency estimates, is to reduce tow duration and use the time saved to collect samples at more stations.