926 resultados para Genomic imprinting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

No abstract available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolism in an environment containing of 21% oxygen has a high risk of oxidative damage due to the formation of reactive oxygen species. Therefore, plants have evolved an antioxidant system consisting of metabolites and enzymes that either directly scavenge ROS or recycle the antioxidant metabolites. Ozone is a temporally dynamic molecule that is both naturally occurring as well as an environmental pollutant that is predicted to increase in concentration in the future as anthropogenic precursor emissions rise. It has been hypothesized that any elevation in ozone concentration will cause increased oxidative stress in plants and therefore enhanced subsequent antioxidant metabolism, but evidence for this response is variable. Along with increasing atmospheric ozone concentrations, atmospheric carbon dioxide concentration is also rising and is predicted to continue rising in the future. The effect of elevated carbon dioxide concentrations on antioxidant metabolism varies among different studies in the literature. Therefore, the question of how antioxidant metabolism will be affected in the most realistic future atmosphere, with increased carbon dioxide concentration and increased ozone concentration, has yet to be answered, and is the subject of my thesis research. First, in order to capture as much of the variability in the antioxidant system as possible, I developed a suite of high-throughput quantitative assays for a variety of antioxidant metabolites and enzymes. I optimized these assays for Glycine max (soybean), one of the most important food crops in the world. These assays provide accurate, rapid and high-throughput measures of both the general and specific antioxidant action of plant tissue extracts. Second, I investigated how growth at either elevated carbon dioxide concentration or chronic elevated ozone concentration altered antioxidant metabolism, and the ability of soybean to respond to an acute oxidative stress in a controlled environment study. I found that growth at chronic elevated ozone concentration increased the antioxidant capacity of leaves, but was unchanged or only slightly increased following an acute oxidative stress, suggesting that growth at chronic elevated ozone concentration primed the antioxidant system. Growth at high carbon dioxide concentration decreased the antioxidant capacity of leaves, increased the response of the existing antioxidant enzymes to an acute oxidative stress, but dampened and delayed the transcriptional response, suggesting an entirely different regulation of the antioxidant system. Third, I tested the findings from the controlled environment study in a field setting by investigating the response of the soybean antioxidant system to growth at elevated carbon dioxide concentration, chronic elevated ozone concentration and the combination of elevated carbon dioxide concentration and elevated ozone concentration. In this study, I confirmed that growth at elevated carbon dioxide concentration decreased specific components of antioxidant metabolism in the field. I also verified that increasing ozone concentration is highly correlated with increases in the metabolic and genomic components of antioxidant metabolism, regardless of carbon dioxide concentration environment, but that the response to increasing ozone concentration was dampened at elevated carbon dioxide concentration. In addition, I found evidence suggesting an up regulation of respiratory metabolism at higher ozone concentration, which would supply energy and carbon for detoxification and repair of cellular damage. These results consistently support the conclusion that growth at elevated carbon dioxide concentration decreases antioxidant metabolism while growth at elevated ozone concentration increases antioxidant metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rumen is home to a diverse population of microorganisms encompassing all three domains of life: Bacteria, Archaea, and Eukarya. Viruses have also been documented to be present in large numbers; however, little is currently known about their role in the dynamics of the rumen ecosystem. This research aimed to use a comparative genomics approach in order to assess the potential evolutionary mechanisms at work in the rumen environment. We proposed to do this by first assessing the diversity and potential for horizontal gene transfer (HGT) of multiple strains of the cellulolytic rumen bacterium, Ruminococcus flavefaciens, and then by conducting a survey of rumen viral metagenome (virome) and subsequent comparison of the virome and microbiome sequences to ascertain if there was genetic information shared between these populations. We hypothesize that the bacteriophages play an integral role in the community dynamics of the rumen, as well as driving the evolution of the rumen microbiome through HGT. In our analysis of the Ruminococcus flavefaciens genomes, there were several mobile elements and clustered regularly interspaced short palindromic repeat (CRISPR) sequences detected, both of which indicate interactions with bacteriophages. The rumen virome sequences revealed a great deal of diversity in the viral populations. Additionally, the microbial and viral populations appeared to be closely associated; the dominant viral types were those that infect the dominant microbial phyla. The correlation between the distribution of taxa in the microbiome and virome sequences as well as the presence of CRISPR loci in the R. flavefaciens genomes, suggested that there is a “kill-the-winner” community dynamic between the viral and microbial populations in the rumen. Additionally, upon comparison of the rumen microbiome and rumen virome sequences, we found that there are many sequence similarities between these populations indicating a potential for phage-mediated HGT. These results suggest that the phages represent a gene pool in the rumen that could potentially contain genes that are important for adaptation and survival in the rumen environment, as well as serving as a molecular ‘fingerprint’ of the rumen ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The impact of historical contingency, i.e. the past evolutionary history of a population, on further adaptation is mostly unknown at both the phenotypic and genomic levels. We addressed this question using a two-step evolution experiment. First, replicate populations of Escherichia coli were propagated in four different environmental conditions for 1000 generations. Then, all replicate populations were transferred and propagated for further 1000 generations to a single new environment. Results Using this two-step experimental evolution strategy, we investigated, at both the phenotypic and genomic levels, whether and how adaptation in the initial historical environments impacted evolutionary trajectories in a new environment. We showed that both the growth rate and fitness of the evolved populations obtained after the second step of evolution were contingent upon past evolutionary history. In contrast however, the genes that were modified during the second step of evolution were independent from the previous history of the populations. Conclusions Our work suggests that historical contingency affects phenotypic adaptation to a new environment. This was however not reflected at the genomic level implying complex relationships between environmental factors and the genotype-to-phenotype map.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The present study was undertaken towards the development of SSR markers and assessing genetic relationships among 32 date palm ( Phoenix dactylifera L.) representing common cultivars grown in different geographical regions in Saudi Arabia. Results: Ninety-three novel simple sequence repeat markers were developed and screened for their ability to detect polymorphism in date palm. Around 71% of genomic SSRs were dinucleotide, 25% tri, 3% tetra and 1% penta nucleotide motives. Twenty-two primers generated a total of 91 alleles with a mean of 4.14 alleles per locus and 100% polymorphism percentage. A 0.595 average polymorphic information content and 0.662 primer discrimination power values were recorded. The expected and observed heterozygosities were 0.676 and 0.763 respectively. Pair-wise similarity values ranged from 0.06 to 0.89 and the overall cultivars averaged 0.41. The UPGMA cluster analysis recovered by principal coordinate analysis illustrated that cultivars tend to group according to their class of maturity, region of cultivation, and fruit color. Analysis of molecular variations (AMOVA) revealed that genetic variation among and within cultivars were 27% and 73%, respectively according to geographical distribution of cultivars. Conclusions: The developed microsatellite markers are additional values to date palm characterization tools that can be used by researchers in population genetics, cultivar identification as well as genetic resource exploration and management. The tested cultivars exhibited a significant amount of genetic diversity and could be suitable for successful breeding program. Genomic sequences generated from this study are available at the National Center for Biotechnology Information (NCBI), Sequence Read Archive (Accession numbers. LIBGSS_039019).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since 1966 especially recent decade, Caspian trout (Salmo trutta caspius Kessler, 1877) considered as a strategic endemic species for Caspian Sea fisheries resources also coldwater aquaculture in Iran. Nowadays habitat condition effects on this subspecies during life stages, artificial breeding and incubation period noticed by research and execution sessions of fisheries in Iran. Incubation duration of Caspian trout from artificial fertilization followed by green egg and eyed egg, hatching and yolk sac absorption identified as most sensitive stages for fish and any pollution, stress and deviation by natural life conditions of embryo up to larvae could provide possible mortalities and observable or hidden alterations. Among all vital factors for Caspian trout welfare even in conservation plans and stocks rehabilitation programs or recent attempts for domestication of this fish for introduction to cold water aquaculture industry, water temperature as the most important physical factor which might conserve or induce stress to rearing environment condition is not considered yet. In hatcheries activities, the temperature for incubation and rearing Caspian trout eggs is determining by available water temperature and wide range of temperatures in governmental or private farms is using depend on the water resources availability. Also global climate change consideration and increase temperature trend accompany with group of physical and chemical factors provided by fish farm discharges and other source points entered to the migration pathway of Caspian trout in spawning season were not investigated before. Natural spawning migration pathway is upstream of Caspian tout south and south west rivers especially in Cheshmehkileh upstream in Tonekabon, Iran directed this research focus on the mentioned location. For simulation of natural spawning bed for Caspian trout, water supplied from the upstream of Daryasar branch as headwater of Cheshmehkileh River which provided REDD water condition for in vitro incubation. Green eggs treatments of wild and F1 cultured brooders both 3+ were incubated. Incubation implemented in dark, constant temperature (4, 8, 12 degree centigrade) and DO–pH–temperature digital monitoring in 3 recycling incubators ended to yolk sac absorption and entering larval stage. Hatching success, possible genome alterations by HSP70 gene expression and comet assay implemented as diagnostic tools in 3 life stages of eyed egg– Alevin and Larvae. Numbers and diameters of larvae white fiber muscles measured by histology experiment and Hematoxylin–eosine staining. Results stated significant effect of incubation temperature on hatching success, genome and white fiber muscles of wild and F1 samples. Hatching success measured as 31% and 38% for cultured and wild cold treatments, 79% and 91% for normal and 64% and 73% for warm cultured and wild treatments respectively. Considerable mortality occurred for cold treatment and 8 degree centigrade stated the best thermal condition in normal incubator according to hatching success in wild Caspian trout samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Reduced-representation sequencing technology iswidely used in genotyping for its economical and efficient features. A popular way to construct the reduced-representation sequencing libraries is to digest the genomic DNA with restriction enzymes. A key factor of this method is to determine the restriction enzyme(s). But there are few computer programs which can evaluate the usability of restriction enzymes in reduced-representation sequencing. SimRAD is an R package which can simulate the digestion of DNA sequence by restriction enzymes and return enzyme loci number as well as fragment number. But for linkage mapping analysis, enzyme loci distribution is also an important factor to evaluate the enzyme. For phylogenetic studies, comparison of the enzyme performance across multiple genomes is important. It is strongly needed to develop a simulation tool to implement these functions. Results: Here, we introduce a Perl module named RestrictionDigest with more functions and improved performance. It can analyze multiple genomes at one run and generate concise comparison of enzyme performance across the genomes. It can simulate single-enzyme digestion, double-enzyme digestion and size selection process and generate comprehensive information of the simulation including enzyme loci number, fragment number, sequences of the fragments, positions of restriction sites on the genome, the coverage of digested fragments on different genome regions and detailed fragment length distribution. Conclusions: RestrictionDigest is an easy-to-use Perl module with flexible parameter settings.With the help of the information produced by the module, researchers can easily determine the most appropriate enzymes to construct the reduced-representation libraries to meet their experimental requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aiming to introduce a multiresidue analysis for the trace detection of pesticide residues belonging to organophosphorus and triazine classes from olive oil samples, a new sample preparation methodology comprising the use of a dual layer of “tailor-made” molecularly imprinted polymers (MIPs) SPE for the simultaneous extraction of both pesticides in a single procedure has been attempted. This work has focused on the implementation of a dual MIP-layer SPE procedure (DL-MISPE) encompassing the use of two MIP layers as specific sorbents. In order to achieve higher recovery rates, the amount of MIP layers has been optimized as well as the influence of MIP packaging order. The optimized DL-MISPE approach has been used in the preconcentration of spiked organic olive oil samples with concentrations of dimethoate and terbuthylazine similar to the maximum residue limits and further quantification by HPLC. High recovery rates for dimethoate (95%) and terbuthylazine (94%) have been achieved with good accuracy and precision. Overall, this work constitutes the first attempt on the development of a dual pesticide residue methodology for the trace analysis of pesticide residues based on molecular imprinting technology. Thus, DL-MISPE constitutes a reliable, robust, and sensitive sample preparation methodology that enables preconcentration of the target pesticides in complex olive oil samples, even at levels similar to the maximum residue limits enforced by the legislation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcription activator-like effectors (TALEs) are virulence factors, produced by the bacterial plant-pathogen Xanthomonas, that function as gene activators inside plant cells. Although the contribution of individual TALEs to infectivity has been shown, the specific roles of most TALEs, and the overall TALE diversity in Xanthomonas spp. is not known. TALEs possess a highly repetitive DNA-binding domain, which is notoriously difficult to sequence. Here, we describe an improved method for characterizing TALE genes by the use of PacBio sequencing. We present 'AnnoTALE', a suite of applications for the analysis and annotation of TALE genes from Xanthomonas genomes, and for grouping similar TALEs into classes. Based on these classes, we propose a unified nomenclature for Xanthomonas TALEs that reveals similarities pointing to related functionalities. This new classification enables us to compare related TALEs and to identify base substitutions responsible for the evolution of TALE specificities. © 2016, Nature Publishing Group. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dinoflagellates possess large genomes in which most genes are present in many copies. This has made studies of their genomic organization and phylogenetics challenging. Recent advances in sequencing technology have made deep sequencing of dinoflagellate transcriptomes feasible. This dissertation investigates the genomic organization of dinoflagellates to better understand the challenges of assembling dinoflagellate transcriptomic and genomic data from short read sequencing methods, and develops new techniques that utilize deep sequencing data to identify orthologous genes across a diverse set of taxa. To better understand the genomic organization of dinoflagellates, a genomic cosmid clone of the tandemly repeated gene Alchohol Dehydrogenase (AHD) was sequenced and analyzed. The organization of this clone was found to be counter to prevailing hypotheses of genomic organization in dinoflagellates. Further, a new non-canonical splicing motif was described that could greatly improve the automated modeling and annotation of genomic data. A custom phylogenetic marker discovery pipeline, incorporating methods that leverage the statistical power of large data sets was written. A case study on Stramenopiles was undertaken to test the utility in resolving relationships between known groups as well as the phylogenetic affinity of seven unknown taxa. The pipeline generated a set of 373 genes useful as phylogenetic markers that successfully resolved relationships among the major groups of Stramenopiles, and placed all unknown taxa on the tree with strong bootstrap support. This pipeline was then used to discover 668 genes useful as phylogenetic markers in dinoflagellates. Phylogenetic analysis of 58 dinoflagellates, using this set of markers, produced a phylogeny with good support of all branches. The Suessiales were found to be sister to the Peridinales. The Prorocentrales formed a monophyletic group with the Dinophysiales that was sister to the Gonyaulacales. The Gymnodinales was found to be paraphyletic, forming three monophyletic groups. While this pipeline was used to find phylogenetic markers, it will likely also be useful for finding orthologs of interest for other purposes, for the discovery of horizontally transferred genes, and for the separation of sequences in metagenomic data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fruit is one of the most complex and important structures produced by flowering plants, and understanding the development and maturation process of fruits in different angiosperm species with diverse fruit structures is of immense interest. In the work presented here, molecular genetics and genomic analysis are used to explore the processes that form the fruit in two species: The model organism Arabidopsis and the diploid strawberry Fragaria vesca. One important basic question concerns the molecular genetic basis of fruit patterning. A long-standing model of Arabidopsis fruit (the gynoecium) patterning holds that auxin produced at the apex diffuses downward, forming a gradient that provides apical-basal positional information to specify different tissue types along the gynoecium’s length. The proposed gradient, however, has never been observed and the model appears inconsistent with a number of observations. I present a new, alternative model, wherein auxin acts to establish the adaxial-abaxial domains of the carpel primordia, which then ensures proper development of the final gynoecium. A second project utilizes genomics to identify genes that regulate fruit color by analyzing the genome sequences of Fragaria vesca, a species of wild strawberry. Shared and distinct SNPs among three F. vesca accessions were identified, providing a foundation for locating candidate mutations underlying phenotypic variations among different F. vesca accessions. Through systematic analysis of relevant SNP variants, a candidate SNP in FveMYB10 was identified that may underlie the fruit color in the yellow-fruited accessions, which was subsequently confirmed by functional assays. Our lab has previously generated extensive RNA-sequencing data that depict genome-scale gene expression profiles in F. vesca fruit and flower tissues at different developmental stages. To enhance the accessibility of this dataset, the web-based eFP software was adapted for this dataset, allowing visualization of gene expression in any tissues by user-initiated queries. Together, this thesis work proposes a well-supported new model of fruit patterning in Arabidopsis and provides further resources for F. vesca, including genome-wide variant lists and the ability to visualize gene expression. This work will facilitate future work linking traits of economic importance to specific genes and gaining novel insights into fruit patterning and development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four years after the completion of the Human Genome Project, the US National Institutes for Health launched the Human Microbiome Project on 19 December 2007. Using metaphor analysis, this article investigates reporting in English-language newspapers on advances in microbiomics from 2003 onwards, when the word “microbiome” was first used. This research was said to open up a “new frontier” and was conceived as a “second human genome project”, this time focusing on the genomes of microbes that inhabit and populate humans rather than focusing on the human genome itself. The language used by scientists and by the journalists who reported on their research employed a type of metaphorical framing that was very different from the hyperbole surrounding the decipherment of the “book of life”. Whereas during the HGP genomic successes had been mainly framed as being based on a unidirectional process of reading off information from a passive genetic or genomic entity, the language employed to discuss advances in microbiomics frames genes, genomes and life in much more active and dynamic ways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beef constitutes a main component of the American diet and still represent the principal source of protein in many parts of the world. Currently, the meat market is experiencing an important transformation; consumers are increasingly switching from consuming traditional beef to grass-fed beef. People recognized products obtained from grass-fed animals as more natural and healthy. However, the true variations between these two production systems regarding various aspects remain unclear. This dissertation provides information from closely genetically related animals, in order to decrease confounding factors, to explain several confused divergences between grain-fed and grass-fed beef. First, we examined the growth curve, important economic traits and quality carcass characteristics over four consecutive years in grain-fed and grass-fed animals, generating valuable information for management decisions and economic evaluation for grass-fed cattle operations. Second, we performed the first integrated transcriptomic and metabolomic analysis in grass-fed beef, detecting alterations in glucose metabolism, divergences in free fatty acids and carnitine conjugated lipid levels, and altered β-oxidation. Results suggest that grass finished beef could possibly benefit consumer health from having lower total fat content and better lipid profile than grain-fed beef. Regarding animal welfare, grass-fed animals may experience less stress than grain-fed individuals as well. Finally, we contrasted the genome-wide DNA methylation of grass-fed beef against grain-fed beef using the methyl-CpG binding domain sequencing (MBD-Seq) method, identifying 60 differentially methylated regions (DMRs). Most of DMRs were located inside or upstream of genes and displayed increased levels of methylation in grass-fed individuals, implying a global DNA methylation increment in this group. Interestingly, chromosome 14, which has been associated with large effects on ADG, marbling, back fat, ribeye area and hot carcass weight in beef cattle, allocated the largest number of DMRs (12/60). The pathway analysis identified skeletal and muscular system as the preeminent physiological system and function, and recognized carbohydrates metabolism, lipid metabolism and tissue morphology among the highest ranked networks. Therefore, although we recognize some limitations and assume that additional examination is still required, this project provides the first integrative genomic, epigenetic and metabolomics characterization of beef produced under grass-fed regimen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genomic selection (GS) has been used to compute genomic estimated breeding values (GEBV) of individuals; however, it has only been applied to animal and major plant crops due to high costs. Besides, breeding and selection is performed at the family level in some crops. We aimed to study the implementation of genome-wide family selection (GWFS) in two loblolly pine (Pinus taeda L.) populations: i) the breeding population CCLONES composed of 63 families (5-20 individuals per family), phenotyped for four traits (stem diameter, stem rust susceptibility, tree stiffness and lignin content) and genotyped using an Illumina Infinium assay with 4740 polymorphic SNPs, and ii) a simulated population that reproduced the same pedigree as CCLONES, 5000 polymorphic loci and two traits (oligogenic and polygenic). In both populations, phenotypic and genotypic data was pooled at the family level in silico. Phenotypes were averaged across replicates for all the individuals and allele frequency was computed for each SNP. Marker effects were estimated at the individual (GEBV) and family (GEFV) levels with Bayes-B using the package BGLR in R and models were validated using 10-fold cross validations. Predicted ability, computed by correlating phenotypes with GEBV and GEFV, was always higher for GEFV in both populations, even after standardizing GEFV predictions to be comparable to GEBV. Results revealed great potential for using GWFS in breeding programs that select families, such as most outbreeding forage species. A significant drop in genotyping costs as one sample per family is needed would allow the application of GWFS in minor crops.