906 resultados para Generalized mean
Resumo:
We propose transmit antenna selection with receive generalized selection combining (TAS/GSC) in dual-hop cognitive decode-and-forward (DF) relay networks for reliability enhancement and interference relaxation. In this paradigm, a single antenna which maximizes the receive signal-to-noise ratio (SNR) is selected at the secondary transmitter and a subset of receive antennas with the highest SNRs are combined at the secondary receiver. To demonstrate the impact of multiple primary users on the cognitive relay network, we derive new closed-form expressions for the exact and asymptotic outage probability with TAS/GSC in the secondary network. Several important design insights are reached. We corroborate that the full diversity gain is achieved, which is entirely determined by the total number of antennas in the secondary network. The negative impact of the primary network on the secondary network is reflected in the SNR gain.
Resumo:
Life science research aims to continuously improve the quality and standard of human life. One of the major challenges in this area is to maintain food safety and security. A number of image processing techniques have been used to investigate the quality of food products. In this paper,we propose a new algorithm to effectively segment connected grains so that each of them can be inspected in a later processing stage. One family of the existing segmentation methods is based on the idea of watersheding, and it has shown promising results in practice.However,due to the over-segmentation issue,this technique has experienced poor performance in various applications,such as inhomogeneous background and connected targets. To solve this problem,we present a combination of two classical techniques to handle this issue.In the first step,a mean shift filter is used to eliminate the inhomogeneous background, where entropy is used to be a converging criterion. Secondly,a color gradient algorithm is used in order to detect the most significant edges, and a marked watershed transform is applied to segment cluttered objects out of the previous processing stages. The proposed framework is capable of compromising among execution time, usability, efficiency and segmentation outcome in analyzing ring die pellets. The experimental results demonstrate that the proposed approach is effectiveness and robust.
Resumo:
The generalized Langevin equation (GLE) has been recently suggested to simulate the time evolution of classical solid and molecular systems when considering general nonequilibrium processes. In this approach, a part of the whole system (an open system), which interacts and exchanges energy with its dissipative environment, is studied. Because the GLE is derived by projecting out exactly the harmonic environment, the coupling to it is realistic, while the equations of motion are non-Markovian. Although the GLE formalism has already found promising applications, e. g., in nanotribology and as a powerful thermostat for equilibration in classical molecular dynamics simulations, efficient algorithms to solve the GLE for realistic memory kernels are highly nontrivial, especially if the memory kernels decay nonexponentially. This is due to the fact that one has to generate a colored noise and take account of the memory effects in a consistent manner. In this paper, we present a simple, yet efficient, algorithm for solving the GLE for practical memory kernels and we demonstrate its capability for the exactly solvable case of a harmonic oscillator coupled to a Debye bath.
Resumo:
We consider transmit antenna selection with receive generalized selection combining (TAS/GSC) for cognitive decodeand-forward (DF) relaying in Nakagami-m fading channels. In an effort to assess the performance, the probability density function and the cumulative distribution function of the endto-end SNR are derived using the moment generating function, from which new exact closed-form expressions for the outage probability and the symbol error rate are derived. We then derive a new closed-form expression for the ergodic capacity. More importantly, by deriving the asymptotic expressions for the outage probability and the symbol error rate, as well as the high SNR approximations of the ergodic capacity, we establish new design insights under the two distinct constraint scenarios: 1) proportional interference power constraint, and 2) fixed interference power constraint. Several pivotal conclusions are reached. For the first scenario, the full diversity order of the
outage probability and the symbol error rate is achieved, and the high SNR slope of the ergodic capacity is 1/2. For the second scenario, the diversity order of the outage probability and the symbol error rate is zero with error floors, and the high SNR slope of the ergodic capacity is zero with capacity ceiling.
Resumo:
Credal networks generalize Bayesian networks by relaxing the requirement of precision of probabilities. Credal networks are considerably more expressive than Bayesian networks, but this makes belief updating NP-hard even on polytrees. We develop a new efficient algorithm for approximate belief updating in credal networks. The algorithm is based on an important representation result we prove for general credal networks: that any credal network can be equivalently reformulated as a credal network with binary variables; moreover, the transformation, which is considerably more complex than in the Bayesian case, can be implemented in polynomial time. The equivalent binary credal network is then updated by L2U, a loopy approximate algorithm for binary credal networks. Overall, we generalize L2U to non-binary credal networks, obtaining a scalable algorithm for the general case, which is approximate only because of its loopy nature. The accuracy of the inferences with respect to other state-of-the-art algorithms is evaluated by extensive numerical tests.
Resumo:
Credal nets generalize Bayesian nets by relaxing the requirement of precision of probabilities. Credal nets are considerably more expressive than Bayesian nets, but this makes belief updating NP-hard even on polytrees. We develop a new efficient algorithm for approximate belief updating in credal nets. The algorithm is based on an important representation result we prove for general credal nets: that any credal net can be equivalently reformulated as a credal net with binary variables; moreover, the transformation, which is considerably more complex than in the Bayesian case, can be implemented in polynomial time. The equivalent binary credal net is updated by L2U, a loopy approximate algorithm for binary credal nets. Thus, we generalize L2U to non-binary credal nets, obtaining an accurate and scalable algorithm for the general case, which is approximate only because of its loopy nature. The accuracy of the inferences is evaluated by empirical tests.
Outperformance in exchange-traded fund pricing deviations: Generalized control of data snooping bias
Resumo:
An investigation into exchange-traded fund (ETF) outperforrnance during the period 2008-2012 is undertaken utilizing a data set of 288 U.S. traded securities. ETFs are tested for net asset value (NAV) premium, underlying index and market benchmark outperformance, with Sharpe, Treynor, and Sortino ratios employed as risk-adjusted performance measures. A key contribution is the application of an innovative generalized stepdown procedure in controlling for data snooping bias. We find that a large proportion of optimized replication and debt asset class ETFs display risk-adjusted premiums with energy and precious metals focused funds outperforming the S&P 500 market benchmark.
Resumo:
Dependency on thermal generation and continued wind power growth in Europe due to renewable energy and greenhouse gas emissions targets has resulted in an interesting set of challenges for power systems. The variability of wind power impacts dispatch and balancing by grid operators, power plant operations by generating companies and market wholesale costs. This paper quantifies the effects of high wind power penetration on power systems with a dependency on gas generation using a realistic unit commitment and economic dispatch model. The test system is analyzed under two scenarios, with and without wind, over one year. The key finding of this preliminary study is that despite increased ramping requirements in the wind scenario, the unit cost of electricity due to sub-optimal operation of gas generators does not show substantial deviation from the no wind scenario.
Resumo:
Multicarrier Index Keying (MCIK) is a recently developed technique that modulates subcarriers but also indices of the subcarriers. In this paper a novel low-complexity detection scheme of subcarrier indices is proposed for an MCIK system and addresses a substantial reduction in complexity over the optimalmaximum likelihood (ML) detection. For the performance evaluation, a closed-form expression for the pairwise error probability (PEP) of an active subcarrier index, and a tight approximation of the average PEP of multiple subcarrier indices are derived in closed-form. The theoretical outcomes are validated usingsimulations, at a difference of less than 0.1dB. Compared to the optimal ML, the proposed detection achieves a substantial reduction in complexity with small loss in error performance (<= 0.6dB).
Resumo:
Background: Although Plasmodium falciparum transmission frequently exhibits seasonal patterns, the drivers of malaria seasonality are often unclear. Given the massive variation in the landscape upon which transmission acts, intra-annual fluctuations are likely influenced by different factors in different settings. Further, the presence of potentially substantial inter-annual variation can mask seasonal patterns; it may be that a location has "strongly seasonal" transmission and yet no single season ever matches the mean, or synoptic, curve. Accurate accounting of seasonality can inform efficient malaria control and treatment strategies. In spite of the demonstrable importance of accurately capturing the seasonality of malaria, data required to describe these patterns is not universally accessible and as such localized and regional efforts at quantifying malaria seasonality are disjointed and not easily generalized.
Methods: The purpose of this review was to audit the literature on seasonality of P. falciparum and quantitatively summarize the collective findings. Six search terms were selected to systematically compile a list of papers relevant to the seasonality of P. falciparum transmission, and a questionnaire was developed to catalogue the manuscripts.
Results and discussion: 152 manuscripts were identified as relating to the seasonality of malaria transmission, deaths due to malaria or the population dynamics of mosquito vectors of malaria. Among these, there were 126 statistical analyses and 31 mechanistic analyses (some manuscripts did both).
Discussion: Identified relationships between temporal patterns in malaria and climatological drivers of malaria varied greatly across the globe, with different drivers appearing important in different locations. Although commonly studied drivers of malaria such as temperature and rainfall were often found to significantly influence transmission, the lags between a weather event and a resulting change in malaria transmission also varied greatly by location.
Conclusions: The contradicting results of studies using similar data and modelling approaches from similar locations as well as the confounding nature of climatological covariates underlines the importance of a multi-faceted modelling approach that attempts to capture seasonal patterns at both small and large spatial scales.
Resumo:
This paper presents a new variant of broadband Doherty power amplifier that employs a novel output combiner. A new parameter ∝ is introduced to permit a generalized analysis of the recently reported Parallel Doherty power amplifier (PDPA),and hence offer design flexibility. The circuit prototype of the new DPA fabricated using GaN devices exhibits maximum drain efficiency of 85% at 43-dBm peak power and 63% at 6-dB backoff power (BOP). Measured drain efficiency of >60% at peak power across 500-MHz frequency range and >50% at 6-dB BOP across 480-MHz frequency range were achieved, confirming the theoretical wideband characteristics of the new DPA.
Resumo:
A geostatistical version of the classical Fisher rule (linear discriminant analysis) is presented.This method is applicable when a large dataset of multivariate observations is available within a domain split in several known subdomains, and it assumes that the variograms (or covariance functions) are comparable between subdomains, which only differ in the mean values of the available variables. The method consists on finding the eigen-decomposition of the matrix W-1B, where W is the matrix of sills of all direct- and cross-variograms, and B is the covariance matrix of the vectors of weighted means within each subdomain, obtained by generalized least squares. The method is used to map peat blanket occurrence in Northern Ireland, with data from the Tellus
survey, which requires a minimal change to the general recipe: to use compositionally-compliant variogram tools and models, and work with log-ratio transformed data.