964 resultados para Gaussian Processes
Resumo:
In this paper, we investigate the achievable rate region of Gaussian multiple access channels (MAC) with finite input alphabet and quantized output. With finite input alphabet and an unquantized receiver, the two-user Gaussian MAC rate region was studied. In most high throughput communication systems based on digital signal processing, the analog received signal is quantized using a low precision quantizer. In this paper, we first derive the expressions for the achievable rate region of a two-user Gaussian MAC with finite input alphabet and quantized output. We show that, with finite input alphabet, the achievable rate region with the commonly used uniform receiver quantizer has a significant loss in the rate region compared. It is observed that this degradation is due to the fact that the received analog signal is densely distributed around the origin, and is therefore not efficiently quantized with a uniform quantizer which has equally spaced quantization intervals. It is also observed that the density of the received analog signal around the origin increases with increasing number of users. Hence, the loss in the achievable rate region due to uniform receiver quantization is expected to increase with increasing number of users. We, therefore, propose a novel non-uniform quantizer with finely spaced quantization intervals near the origin. For a two-user Gaussian MAC with a given finite input alphabet and low precision receiver quantization, we show that the proposed non-uniform quantizer has a significantly larger rate region compared to what is achieved with a uniform quantizer.
Resumo:
The mode I fracture toughness of concrete can be experimentally determined using three point bend beam in conjunction with digital image correlation (DIC). Three different geometrically similar sizes of beams are cast for this study. To study the influence of fly ash and silica fume on fracture toughness of SCC, three SCC mixes are prepared with and without mineral additions. The scanning electron microscope (SEM) images are taken on the fractured surface to add information on fracture process in SCC. From this study, it is concluded that the fracture toughness of SCC with mineral addition is higher when compared to those without mineral addition.
Resumo:
We study the phenomenon of electromagnetically induced transparency and absorption (EITA) using a control laser with a Laguerre-Gaussian (LG) profile instead of the usual Gaussian profile, and observe significant narrowing of the resonance widths. Aligning the probe beam to the central hole in the doughnut-shaped LG control beam allows simultaneously a strong control intensity required for high signal-to-noise ratio and a low intensity in the probe region required to get narrow resonances. Experiments with an expanded Gaussian control and a second-order LG control show that transit time and orbital angular momentum do not play a significant role. This explanation is borne out by a density-matrix analysis with a radially varying control Rabi frequency. We observe these resonances using degenerate two-level transitions in the D-2 line of Rb-87 in a room temperature vapor cell, and an EIA resonance with width up to 20 times below the natural linewidth for the F = 2 -> F' = 3 transition. Thus the use of LG beams should prove advantageous in all applications of EITA and other kinds of pump-probe spectroscopy as well.
Resumo:
We present a novel multi-timescale Q-learning algorithm for average cost control in a Markov decision process subject to multiple inequality constraints. We formulate a relaxed version of this problem through the Lagrange multiplier method. Our algorithm is different from Q-learning in that it updates two parameters - a Q-value parameter and a policy parameter. The Q-value parameter is updated on a slower time scale as compared to the policy parameter. Whereas Q-learning with function approximation can diverge in some cases, our algorithm is seen to be convergent as a result of the aforementioned timescale separation. We show the results of experiments on a problem of constrained routing in a multistage queueing network. Our algorithm is seen to exhibit good performance and the various inequality constraints are seen to be satisfied upon convergence of the algorithm.
Resumo:
We have conceived a supersymmetric Type II seesaw model at TeV scale, which has some additional particles consisting of scalar and fermionic triplet Higgs states, whose masses are around a few hundred GeV. In this particular model, we have studied constraints on the masses of triplet states arising from the lepton flavor violating (LFV) processes, such as mu -> 3e and mu -> e gamma. We have analyzed the implications of these constraints on other observable quantities such as the muon anomalous magnetic moment and the decay patterns of scalar triplet Higgses. Scalar triplet Higgs states can decay into leptons and into supersymmetric fields. We have found that the constraints from LFV can affect these various decay modes.
Resumo:
We consider bounds for the capacity region of the Gaussian X channel (XC), a system consisting of two transmit-receive pairs, where each transmitter communicates with both the receivers. We first classify the XC into two classes, the strong XC and the mixed XC. In the strong XC, either the direct channels are stronger than the cross channels or vice-versa, whereas in the mixed XC, one of the direct channels is stronger than the corresponding cross channel and vice-versa. After this classification, we give outer bounds on the capacity region for each of the two classes. This is based on the idea that when one of the messages is eliminated from the XC, the rate region of the remaining three messages are enlarged. We make use of the Z channel, a system obtained by eliminating one message and its corresponding channel from the X channel, to bound the rate region of the remaining messages. The outer bound to the rate region of the remaining messages defines a subspace in R-+(4) and forms an outer bound to the capacity region of the XC. Thus, the outer bound to the capacity region of the XC is obtained as the intersection of the outer bounds to the four combinations of the rate triplets of the XC. Using these outer bounds on the capacity region of the XC, we derive new sum-rate outer bounds for both strong and mixed Gaussian XCs and compare them with those existing in literature. We show that the sum-rate outer bound for strong XC gives the sum-rate capacity in three out of the four sub-regions of the strong Gaussian XC capacity region. In case of mixed Gaussian XC, we recover the recent results in 11] which showed that the sum-rate capacity is achieved in two out of the three sub-regions of the mixed XC capacity region and give a simple alternate proof of the same.
Resumo:
We consider the MIMO X channel (XC), a system consisting of two transmit-receive pairs, where each transmitter communicates with both the receivers. Both the transmitters and receivers are equipped with multiple antennas. First, we derive an upper bound on the sum-rate capacity of the MIMO XC under individual power constraint at each transmitter. The sum-rate capacity of the two-user multiple access channel (MAC) that results when receiver cooperation is assumed forms an upper bound on the sum-rate capacity of the MIMO XC. We tighten this bound by considering noise correlation between the receivers and deriving the worst noise covariance matrix. It is shown that the worst noise covariance matrix is a saddle-point of a zero-sum, two-player convex-concave game, which is solved through a primal-dual interior point method that solves the maximization and the minimization parts of the problem simultaneously. Next, we propose an achievable scheme which employs dirty paper coding at the transmitters and successive decoding at the receivers. We show that the derived upper bound is close to the achievable region of the proposed scheme at low to medium SNRs.
Resumo:
Hydroxyapatite (HA)-based biocomposites have been widely investigated for a multitude of applications and these studies have been largely driven to improve mechanical properties (toughness and strength) without compromising cytocompatibility properties. Apart from routine cell viability/proliferation analysis, limited efforts have been made to quantify the fate processes (cell proliferation, cell cycle, and cell apoptosis) of human fetal osteoblast (hFOB) cells on HA-based composites, in vitro. In this work, the osteoblast cell fate process has been studied on a model hydroxyapatite-titanium (HA-Ti) system using the flow cytometry. In order to retain both HA and Ti, the novel processing technique, that is, spark plasma sintering, was suitably adopted. The cell fate processes of hFOBs, as evaluated using a flow cytometry, revealed statistically insignificant differences among HA-10 wt % Ti and HA and control (tissue culture polystyrene surface) in terms of osteoblast apoptosis, proliferation index as well as division index. For the first time, we provide quantified flow cytometry results to demonstrate that 10 wt % Ti additions to HA do not have any significant influence on the fate processes of human osteoblast-like cells, in vitro.
Resumo:
In this paper, a nonlinear suboptimal detector whose performance in heavy-tailed noise is significantly better than that of the matched filter is proposed. The detector consists of a nonlinear wavelet denoising filter to enhance the signal-to-noise ratio, followed by a replica correlator. Performance of the detector is investigated through an asymptotic theoretical analysis as well as Monte Carlo simulations. The proposed detector offers the following advantages over the optimal (in the Neyman-Pearson sense) detector: it is easier to implement, and it is more robust with respect to error in modeling the probability distribution of noise.
Resumo:
Impoverishment of particles, i.e. the discretely simulated sample paths of the process dynamics, poses a major obstacle in employing the particle filters for large dimensional nonlinear system identification. A known route of alleviating this impoverishment, i.e. of using an exponentially increasing ensemble size vis-a-vis the system dimension, remains computationally infeasible in most cases of practical importance. In this work, we explore the possibility of unscented transformation on Gaussian random variables, as incorporated within a scaled Gaussian sum stochastic filter, as a means of applying the nonlinear stochastic filtering theory to higher dimensional structural system identification problems. As an additional strategy to reconcile the evolving process dynamics with the observation history, the proposed filtering scheme also modifies the process model via the incorporation of gain-weighted innovation terms. The reported numerical work on the identification of structural dynamic models of dimension up to 100 is indicative of the potential of the proposed filter in realizing the stated aim of successfully treating relatively larger dimensional filtering problems. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
We consider a Gaussian multiple access channel (GMAC) where the users are sensor nodes powered by energy harvesters. The energy harvesters may have finite or infinite buffer to store the harvested energy. First, we find the capacity region of a GMAC powered by transmit nodes with an infinite energy buffer. Next, we consider a GMAC with the transmitting nodes equipped with a finite energy buffer. Initially we assume perfect knowledge of the buffer state information at both the encoders and the decoder. We provide an achievable region for this case. We also generalize the achievable region when only partial information about buffer state is available at both the encoders and the decoder.
Achievable rate region of gaussian broadcast channel with finite input alphabet and quantized output
Resumo:
In this paper, we study the achievable rate region of two-user Gaussian broadcast channel (GBC) when the messages to be transmitted to both the users take values from finite signal sets and the received signal is quantized at both the users. We refer to this channel as quantized broadcast channel (QBC). We first observe that the capacity region defined for a GBC does not carry over as such to QBC. Also, we show that the optimal decoding scheme for GBC (i.e., high SNR user doing successive decoding and low SNR user decoding its message alone) is not optimal for QBC. We then propose an achievable rate region for QBC based on two different schemes. We present achievable rate region results for the case of uniform quantization at the receivers. We find that rotation of one of the user's input alphabet with respect to the other user's alphabet marginally enlarges the achievable rate region of QBC when almost equal powers are allotted to both the users.
Resumo:
We show that as n changes, the characteristic polynomial of the n x n random matrix with i.i.d. complex Gaussian entries can be described recursively through a process analogous to Polya's urn scheme. As a result, we get a random analytic function in the limit, which is given by a mixture of Gaussian analytic functions. This suggests another reason why the zeros of Gaussian analytic functions and the Ginibre ensemble exhibit similar local repulsion, but different global behavior. Our approach gives new explicit formulas for the limiting analytic function.
Resumo:
Energy harvesting sensor nodes are gaining popularity due to their ability to improve the network life time and are becoming a preferred choice supporting green communication. In this paper, we focus on communicating reliably over an additive white Gaussian noise channel using such an energy harvesting sensor node. An important part of this paper involves appropriate modeling of energy harvesting, as done via various practical architectures. Our main result is the characterization of the Shannon capacity of the communication system. The key technical challenge involves dealing with the dynamic (and stochastic) nature of the (quadratic) cost of the input to the channel. As a corollary, we find close connections between the capacity achieving energy management policies and the queueing theoretic throughput optimal policies.
Resumo:
This commentary discusses and summarizes the key highlights of our recently reported work entitled ``Neuronal Differentiation of Embryonic Stem Cell Derived Neuronal Progenitors Can Be Regulated by Stretchable Conducting Polymers.'' The prospect of controlling the mechanical-rigidity and the surface conductance properties offers a unique combination for tailoring the growth and differentiation of neuronal cells. We emphasize the utility of transparent elastomeric substrates with coatings of electrically conducting polymer to realize the desired substrate-characteristics for cellular development processes. Our study showed that neuronal differentiation from ES cells is highly influenced by the specific substrates on which they are growing. Thus, our results provide a better strategy for regulated neuronal differentiation by using such functional conducting surfaces.