974 resultados para GaN based quantum dots
Resumo:
Hoy en día, los sistemas middleware de publicar-suscribir con la filtración de mensajes basado en contenido tiende a ser popularizado, y un sistema como este requiere codificar su mensaje a la combinación de varios elementos que se encuentran en los conjuntos no-interseccionados. Varios predicados posibles en los dominios de esos conjuntos forman un filtro, y el núcleo de algoritmo filtrado es seleccionar filtros adaptados tan pronto como sea posible. Sin embargo, el conjunto, que está formado por los filtros, contiene la extremadamente fuerte indeterminación y distensibilidad, lo que restringe el algoritmo filtrado. Por la resolución de la distensibilidad, se estudió la característica del conjunto de filtros en álgebra, y sabía que es un retículo específico. Por lo tanto, se intenta usar el carácter, el cual los retículos forman un conjunto parcialmente ordenado (o poset, del inglés partially ordered set) con límites, para reducir el tamaño de conjunto de filtros (compresión equivalente). Por estas razones, es necesario implementar un contenedor abstracto de retículo, y evaluar su desempeño tanto en la teoría, como en la práctica, para la solución de la distensibilidad del conjunto de filtros. Retículo (Lattice) es una estructura importante de Álgebra Abstracta, comúnmente se utiliza para resolver el problema teórico, y apenas de ser un contenedor abstracto en la ciencia de software, como resultado de su implementación compleja que proviene de su trivialidad en álgebra. Y por eso se hace difícil mi trabajo. Con el fin de evitar la teoría compleja del sistema práctico, simplemente introduce su núcleo algoritmo, el algoritmo de conteo, y esto llevó a cabo con el problema - la distensibilidad del conjunto de filtros. A continuación, se investigó la solución posible con retículos en la teoría, y se obtuvo el diseño de la implementación, normas para las pruebas xUnit y par´ametros para la evaluación. Por último, señalamos el entorno, el resultado, el análisis y la conclusión de la prueba de rendimiento.
Resumo:
GaN y AlN son materiales semiconductores piezoeléctricos del grupo III-V. La heterounión AlGaN/GaN presenta una elevada carga de polarización tanto piezoeléctrica como espontánea en la intercara, lo que genera en su cercanía un 2DEG de grandes concentración y movilidad. Este 2DEG produce una muy alta potencia de salida, que a su vez genera una elevada temperatura de red. Las tensiones de puerta y drenador provocan un stress piezoeléctrico inverso, que puede afectar a la carga de polarización piezoeléctrica y así influir la densidad 2DEG y las características de salida. Por tanto, la física del dispositivo es relevante para todos sus aspectos eléctricos, térmicos y mecánicos. En esta tesis se utiliza el software comercial COMSOL, basado en el método de elementos finitos (FEM), para simular el comportamiento integral electro-térmico, electro-mecánico y electro-térmico-mecánico de los HEMTs de GaN. Las partes de acoplamiento incluyen el modelo de deriva y difusión para el transporte electrónico, la conducción térmica y el efecto piezoeléctrico. Mediante simulaciones y algunas caracterizaciones experimentales de los dispositivos, hemos analizado los efectos térmicos, de deformación y de trampas. Se ha estudiado el impacto de la geometría del dispositivo en su auto-calentamiento mediante simulaciones electro-térmicas y algunas caracterizaciones eléctricas. Entre los resultados más sobresalientes, encontramos que para la misma potencia de salida la distancia entre los contactos de puerta y drenador influye en generación de calor en el canal, y así en su temperatura. El diamante posee une elevada conductividad térmica. Integrando el diamante en el dispositivo se puede dispersar el calor producido y así reducir el auto-calentamiento, al respecto de lo cual se han realizado diversas simulaciones electro-térmicas. Si la integración del diamante es en la parte superior del transistor, los factores determinantes para la capacidad disipadora son el espesor de la capa de diamante, su conductividad térmica y su distancia a la fuente de calor. Este procedimiento de disipación superior también puede reducir el impacto de la barrera térmica de intercara entre la capa adaptadora (buffer) y el substrato. La muy reducida conductividad eléctrica del diamante permite que pueda contactar directamente el metal de puerta (muy cercano a la fuente de calor), lo que resulta muy conveniente para reducir el auto-calentamiento del dispositivo con polarización pulsada. Por otra parte se simuló el dispositivo con diamante depositado en surcos atacados sobre el sustrato como caminos de disipación de calor (disipador posterior). Aquí aparece una competencia de factores que influyen en la capacidad de disipación, a saber, el surco atacado contribuye a aumentar la temperatura del dispositivo debido al pequeño tamaño del disipador, mientras que el diamante disminuiría esa temperatura gracias a su elevada conductividad térmica. Por tanto, se precisan capas de diamante relativamente gruesas para reducer ele efecto de auto-calentamiento. Se comparó la simulación de la deformación local en el borde de la puerta del lado cercano al drenador con estructuras de puerta estándar y con field plate, que podrían ser muy relevantes respecto a fallos mecánicos del dispositivo. Otras simulaciones se enfocaron al efecto de la deformación intrínseca de la capa de diamante en el comportamiento eléctrico del dispositivo. Se han comparado los resultados de las simulaciones de la deformación y las características eléctricas de salida con datos experimentales obtenidos por espectroscopía micro-Raman y medidas eléctricas, respectivamente. Los resultados muestran el stress intrínseco en la capa producido por la distribución no uniforme del 2DEG en el canal y la región de acceso. Además de aumentar la potencia de salida del dispositivo, la deformación intrínseca en la capa de diamante podría mejorar la fiabilidad del dispositivo modulando la deformación local en el borde de la puerta del lado del drenador. Finalmente, también se han simulado en este trabajo los efectos de trampas localizados en la superficie, el buffer y la barrera. Las medidas pulsadas muestran que tanto las puertas largas como las grandes separaciones entre los contactos de puerta y drenador aumentan el cociente entre la corriente pulsada frente a la corriente continua (lag ratio), es decir, disminuir el colapse de corriente (current collapse). Este efecto ha sido explicado mediante las simulaciones de los efectos de trampa de superficie. Por su parte, las referidas a trampas en el buffer se enfocaron en los efectos de atrapamiento dinámico, y su impacto en el auto-calentamiento del dispositivo. Se presenta también un modelo que describe el atrapamiento y liberación de trampas en la barrera: mientras que el atrapamiento se debe a un túnel directo del electrón desde el metal de puerta, el desatrapamiento consiste en la emisión del electrón en la banda de conducción mediante túnel asistido por fonones. El modelo también simula la corriente de puerta, debida a la emisión electrónica dependiente de la temperatura y el campo eléctrico. Además, también se ilustra la corriente de drenador dependiente de la temperatura y el campo eléctrico. ABSTRACT GaN and AlN are group III-V piezoelectric semiconductor materials. The AlGaN/GaN heterojunction presents large piezoelectric and spontaneous polarization charge at the interface, leading to high 2DEG density close to the interface. A high power output would be obtained due to the high 2DEG density and mobility, which leads to elevated lattice temperature. The gate and drain biases induce converse piezoelectric stress that can influence the piezoelectric polarization charge and further influence the 2DEG density and output characteristics. Therefore, the device physics is relevant to all the electrical, thermal, and mechanical aspects. In this dissertation, by using the commercial finite-element-method (FEM) software COMSOL, we achieved the GaN HEMTs simulation with electro-thermal, electro-mechanical, and electro-thermo-mechanical full coupling. The coupling parts include the drift-diffusion model for the electron transport, the thermal conduction, and the piezoelectric effect. By simulations and some experimental characterizations, we have studied the device thermal, stress, and traps effects described in the following. The device geometry impact on the self-heating was studied by electro-thermal simulations and electrical characterizations. Among the obtained interesting results, we found that, for same power output, the distance between the gate and drain contact can influence distribution of the heat generation in the channel and thus influence the channel temperature. Diamond possesses high thermal conductivity. Integrated diamond with the device can spread the generated heat and thus potentially reduce the device self-heating effect. Electro-thermal simulations on this topic were performed. For the diamond integration on top of the device (top-side heat spreading), the determinant factors for the heat spreading ability are the diamond thickness, its thermal conductivity, and its distance to the heat source. The top-side heat spreading can also reduce the impact of thermal boundary resistance between the buffer and the substrate on the device thermal behavior. The very low electrical conductivity of diamond allows that it can directly contact the gate metal (which is very close to the heat source), being quite convenient to reduce the self-heating for the device under pulsed bias. Also, the diamond coated in vias etched in the substrate as heat spreading path (back-side heat spreading) was simulated. A competing mechanism influences the heat spreading ability, i.e., the etched vias would increase the device temperature due to the reduced heat sink while the coated diamond would decrease the device temperature due to its higher thermal conductivity. Therefore, relative thick coated diamond is needed in order to reduce the self-heating effect. The simulated local stress at the gate edge of the drain side for the device with standard and field plate gate structure were compared, which would be relevant to the device mechanical failure. Other stress simulations focused on the intrinsic stress in the diamond capping layer impact on the device electrical behaviors. The simulated stress and electrical output characteristics were compared to experimental data obtained by micro-Raman spectroscopy and electrical characterization, respectively. Results showed that the intrinsic stress in the capping layer caused the non-uniform distribution of 2DEG in the channel and the access region. Besides the enhancement of the device power output, intrinsic stress in the capping layer can potentially improve the device reliability by modulating the local stress at the gate edge of the drain side. Finally, the surface, buffer, and barrier traps effects were simulated in this work. Pulsed measurements showed that long gates and distances between gate and drain contact can increase the gate lag ratio (decrease the current collapse). This was explained by simulations on the surface traps effect. The simulations on buffer traps effects focused on illustrating the dynamic trapping/detrapping in the buffer and the self-heating impact on the device transient drain current. A model was presented to describe the trapping and detrapping in the barrier. The trapping was the electron direct tunneling from the gate metal while the detrapping was the electron emission into the conduction band described by phonon-assisted tunneling. The reverse gate current was simulated based on this model, whose mechanism can be attributed to the temperature and electric field dependent electron emission in the barrier. Furthermore, the mechanism of the device bias via the self-heating and electric field impact on the electron emission and the transient drain current were also illustrated.
Resumo:
Secret-key agreement, a well-known problem in cryptography, allows two parties holding correlated sequences to agree on a secret key communicating over a public channel. It is usually divided into three different procedures: advantage distillation, information reconciliation and privacy amplification. The efficiency of each one of these procedures is needed if a positive key rate is to be attained from the legitimate parties? correlated sequences. Quantum key distribution (QKD) allows the two parties to obtain correlated sequences, provided that they have access to an authenticated channel. The new generation of QKD devices is able to work at higher speeds and in noisier or more absorbing environments. This exposes the weaknesses of current information reconciliation protocols, a key component to their performance. Here we present a new protocol based in low-density parity-check (LDPC) codes that presents the advantages of low interactivity, rate adaptability and high efficiency,characteristics that make it highly suitable for next generation QKD devices.
Resumo:
Current prototypes of quantum-dot intermediate band solar cells suffer from voltage reduction due to the existence of carrier thermal escape. An enlarged sub-bandgap EL would not only minimize this problem, but would also lead to a bandgap distribution that exploits more efficiently the solar spectrum. In this work we demonstrate InAs/InGaP QD-IBSC prototypes with the following bandgap distribution: EG = 1.88 eV, EH = 1.26 eV and EL > 0.4 eV. We have measured, for the first time in this material, both the interband and intraband transitions by means of photocurrent experiments. The activation energy of the carrier thermal escape in our devices has also been measured. It is found that its value, compared to InAs/GaAs-based prototypes, does not follow the increase in EL. The benefits of using thin AlGaAs barriers before and after the quantum-dot layers are analyzed.
Self assembled and ordered group III nitride nanocolumnar structures for light emitting applications
Resumo:
El objetivo de este trabajo es un estudio profundo del crecimiento selectivo de nanoestructuras de InGaN por epitaxia de haces moleculares asistido por plasma, concentrandose en el potencial de estas estructuras como bloques constituyentes en LEDs de nueva generación. Varias aproximaciones al problema son discutidas; desde estructuras axiales InGaN/GaN, a estructuras core-shell, o nanoestructuras crecidas en sustratos con orientaciones menos convencionales (semi polar y no polar). La primera sección revisa los aspectos básicos del crecimiento auto-ensamblado de nanocolumnas de GaN en sustratos de Si(111). Su morfología y propiedades ópticas son comparadas con las de capas compactas de GaN sobre Si(111). En el caso de las columnas auto-ensambladas de InGaN sobre Si(111), se presentan resultados sobre el efecto de la temperatura de crecimiento en la incorporación de In. Por último, se discute la inclusión de nanodiscos de InGaN en las nanocolumnas de GaN. La segunda sección revisa los mecanismos básicos del crecimiento ordenado de nanoestructuras basadas en GaN, sobre templates de GaN/zafiro. Aumentando la relación III/V localmente, se observan cambios morfológicos; desde islas piramidales, a nanocolumnas de GaN terminadas en planos semipolares, y finalmente, a nanocolumnas finalizadas en planos c polares. Al crecer nanodiscos de InGaN insertados en las nanocolumnas de GaN, las diferentes morfologias mencionadas dan lugar a diferentes propiedades ópticas de los nanodiscos, debido al diferente carácter (semi polar o polar) de los planos cristalinos involucrados. La tercera sección recoge experimentos acerca de los efectos que la temperatura de crecimiento y la razón In/Ga tienen en la morfología y emisión de nanocolumnas ordenadas de InGaN crecidas sobre templates GaN/zafiro. En el rango de temperaturas entre 650 y 750 C, la incorporacion de In puede modificarse bien por la temperatura de crecimiento, o por la razón In/Ga. Controlar estos factores permite la optimización de la longitud de onda de emisión de las nanocolumnas de InGaN. En el caso particular de la generación de luz blanca, se han seguidos dos aproximaciones. En la primera, se obtiene emisión amarilla-blanca a temperatura ambiente de nanoestructuras donde la región de InGaN consiste en un gradiente de composiciones de In, que se ha obtenido a partir de un gradiente de temperatura durante el crecimiento. En la segunda, el apilamiento de segmentos emitiendo en azul, verde y rojo, consiguiendo la integración monolítica de estas estructuras en cada una de las nanocolumnas individuales, da lugar a emisores ordenados con un amplio espectro de emisión. En esta última aproximación, la forma espectral puede controlarse con la longitud (duración del crecimiento) de cada uno de los segmentos de InGaN. Más adelante, se presenta el crecimiento ordenado, por epitaxia de haces moleculares, de arrays de nanocolumnas que son diodos InGaN/GaN cada una de ellas, emitiendo en azul (441 nm), verde (502 nm) y amarillo (568 nm). La zona activa del dispositivo consiste en una sección de InGaN, de composición constante nominalmente y longitud entre 250 y 500 nm, y libre de defectos extendidos en contraste con capas compactas de InGaN de similares composiciones y espesores. Los espectros de electroluminiscencia muestran un muy pequeño desplazamiento al azul al aumentar la corriente inyectada (desplazamiento casi inexistente en el caso del dispositivo amarillo), y emisiones ligeramente más anchas que en el caso del estado del arte en pozos cuánticos de InGaN. A continuación, se presenta y discute el crecimiento ordenado de nanocolumnas de In(Ga)N/GaN en sustratos de Si(111). Nanocolumnas ordenadas emitiendo desde el ultravioleta (3.2 eV) al infrarrojo (0.78 eV) se crecieron sobre sustratos de Si(111) utilizando una capa compacta (“buffer”) de GaN. La morfología y eficiencia de emisión de las nanocolumnas emitiendo en el rango espectral verde pueden ser mejoradas ajustando las relaciones In/Ga y III/N, y una eficiencia cuántica interna del 30% se deriva de las medidas de fotoluminiscencia en nanocolumnas optimizadas. En la siguiente sección de este trabajo se presenta en detalle el mecanismo tras el crecimiento ordenado de nanocolumnas de InGaN/GaN emitiendo en el verde, y sus propiedades ópticas. Nanocolumnas de InGaN/GaN con secciones largas de InGaN (330-830 nm) se crecieron tanto en sustratos GaN/zafiro como GaN/Si(111). Se encuentra que la morfología y la distribución espacial del In dentro de las nanocolumnas dependen de las relaciones III/N e In/Ga locales en el frente de crecimiento de las nanocolumnas. La dispersión en el contenido de In entre diferentes nanocolumnas dentro de la misma muestra es despreciable, como indica las casi identicas formas espectrales de la catodoluminiscencia de una sola nanocolumna y del conjunto de ellas. Para las nanocolumnas de InGaN/GaN crecidas sobre GaN/Si(111) y emitiendo en el rango espectral verde, la eficiencia cuántica interna aumenta hasta el 30% al disminuir la temperatura de crecimiento y aumentar el nitrógeno activo. Este comportamiento se debe probablemente a la formación de estados altamente localizados, como indica la particular evolución de la energía de fotoluminiscencia con la temperatura (ausencia de “s-shape”) en muestras con una alta eficiencia cuántica interna. Por otro lado, no se ha encontrado la misma dependencia entre condiciones de crecimiento y efiencia cuántica interna en las nanoestructuras InGaN/GaN crecidas en GaN/zafiro, donde la máxima eficiencia encontrada ha sido de 3.7%. Como alternativa a las nanoestructuras axiales de InGaN/GaN, la sección 4 presenta resultados sobre el crecimiento y caracterización de estructuras core-shell de InGaN/GaN, re-crecidas sobre arrays de micropilares de GaN fabricados por ataque de un template GaN/zafiro (aproximación top-down). El crecimiento de InGaN/GaN es conformal, con componentes axiales y radiales en el crecimiento, que dan lugar a la estructuras core-shell con claras facetas hexagonales. El crecimiento radial (shell) se ve confirmado por medidas de catodoluminiscencia con resolución espacial efectuadas en un microscopio electrónico de barrido, asi como por medidas de microscopía de transmisión de electrones. Más adelante, el crecimiento de micro-pilares core-shell de InGaN se realizó en pilares GaN (cores) crecidos selectivamente por epitaxia de metal-orgánicos en fase vapor. Con el crecimiento de InGaN se forman estructuras core-shell con emisión alrededor de 3 eV. Medidas de catodoluminiscencia resuelta espacialmente indican un aumento en el contenido de indio del shell en dirección a la parte superior del pilar, que se manifiesta en un desplazamiento de la emisión de 3.2 eV en la parte inferior, a 3.0 eV en la parte superior del shell. Este desplazamiento está relacionado con variaciones locales de la razón III/V en las facetas laterales. Finalmente, se demuestra la fabricación de una estructura pin basada en estos pilares core-shell. Medidas de electroluminiscencia resuelta espacialmente, realizadas en pilares individuales, confirman que la electroluminiscencia proveniente del shell de InGaN (diodo lateral) está alrededor de 3.0 eV, mientras que la emisión desde la parte superior del pilar (diodo axial) está alrededor de 2.3 eV. Para finalizar, se presentan resultados sobre el crecimiento ordenado de GaN, con y sin inserciones de InGaN, en templates semi polares (GaN(11-22)/zafiro) y no polares (GaN(11-20)/zafiro). Tras el crecimiento ordenado, gran parte de los defectos presentes en los templates originales se ven reducidos, manifestándose en una gran mejora de las propiedades ópticas. En el caso de crecimiento selectivo sobre templates con orientación GaN(11-22), no polar, la formación de nanoestructuras con una particular morfología (baja relación entre crecimiento perpedicular frente a paralelo al plano) permite, a partir de la coalescencia de estas nanoestructuras, la fabricación de pseudo-templates no polares de GaN de alta calidad. ABSTRACT The aim of this work is to gain insight into the selective area growth of InGaN nanostructures by plasma assisted molecular beam epitaxy, focusing on their potential as building blocks for next generation LEDs. Several nanocolumn-based approaches such as standard axial InGaN/GaN structures, InGaN/GaN core-shell structures, or InGaN/GaN nanostructures grown on semi- and non-polar substrates are discussed. The first section reviews the basics of the self-assembled growth of GaN nanocolumns on Si(111). Morphology differences and optical properties are compared to those of GaN layer grown directly on Si(111). The effects of the growth temperature on the In incorporation in self-assembled InGaN nanocolumns grown on Si(111) is described. The second section reviews the basic growth mechanisms of selectively grown GaNbased nanostructures on c-plane GaN/sapphire templates. By increasing the local III/V ratio morphological changes from pyramidal islands, to GaN nanocolumns with top semi-polar planes, and further to GaN nanocolumns with top polar c-planes are observed. When growing InGaN nano-disks embedded into the GaN nanocolumns, the different morphologies mentioned lead to different optical properties, due to the semipolar and polar nature of the crystal planes involved. The third section reports on the effect of the growth temperature and In/Ga ratio on the morphology and light emission characteristics of ordered InGaN nanocolumns grown on c-plane GaN/sapphire templates. Within the growth temperature range of 650 to 750oC the In incorporation can be modified either by the growth temperature, or the In/Ga ratio. Control of these factors allows the optimization of the InGaN nanocolumns light emission wavelength. In order to achieve white light emission two approaches are used. First yellow-white light emission can be obtained at room temperature from nanostructures where the InGaN region is composition-graded by using temperature gradients during growth. In a second approach the stacking of red, green and blue emitting segments was used to achieve the monolithic integration of these structures in one single InGaN nanocolumn leading to ordered broad spectrum emitters. With this approach, the spectral shape can be controlled by changing the thickness of the respective InGaN segments. Furthermore the growth of ordered arrays of InGaN/GaN nanocolumnar light emitting diodes by molecular beam epitaxy, emitting in the blue (441 nm), green (502 nm), and yellow (568 nm) spectral range is reported. The device active region, consisting of a nanocolumnar InGaN section of nominally constant composition and 250 to 500 nm length, is free of extended defects, which is in strong contrast to InGaN layers (planar) of similar composition and thickness. Electroluminescence spectra show a very small blue shift with increasing current, (almost negligible in the yellow device) and line widths slightly broader than those of state-of-the-art InGaN quantum wells. Next the selective area growth of In(Ga)N/GaN nanocolumns on Si(111) substrates is discussed. Ordered In(Ga)N/GaN nanocolumns emitting from ultraviolet (3.2 eV) to infrared (0.78 eV) were then grown on top of GaN-buffered Si substrates. The morphology and the emission efficiency of the In(Ga)N/GaN nanocolumns emitting in the green could be substantially improved by tuning the In/Ga and total III/N ratios, where an estimated internal quantum efficiency of 30 % was derived from photoluminescence data. In the next section, this work presents a study on the selective area growth mechanisms of green-emitting InGaN/GaN nanocolumns and their optical properties. InGaN/GaN nanocolumns with long InGaN sections (330-830nm) were grown on GaN/sapphire and GaN-buffered Si(111). The nanocolumn’s morphology and spatial indium distribution is found to depend on the local group (III)/N and In/Ga ratios at the nanocolumn’s top. A negligible spread of the average indium incorporation among different nanostructures is found as indicated by similar shapes of the cathodoluminescence spectra taken from single nanocolumns and ensembles of nanocolumns. For InGaN/GaN nanocolumns grown on GaN-buffered Si(111), all emitting in the green spectral range, the internal quantum efficiency increases up to 30% when decreasing growth temperature and increasing active nitrogen. This behavior is likely due to the formation of highly localized states, as indicated by the absence of a complete s-shape behavior of the PL peak position with temperature (up to room temperature) in samples with high internal quantum efficiency. On the other hand, no dependence of the internal quantum efficiency on the growth conditions is found for InGaN/GaN nanostructures grown on GaN/sapphire, where the maximum achieved efficiency is 3.7%. As alternative to axial InGaN/GaN nanostructures, section 4 reports on the growth and characterization of InGaN/GaN core-shell structures on an ordered array of top-down patterned GaN microrods etched from a GaN/sapphire template. Growth of InGaN/GaN is conformal, with axial and radial growth components leading to core-shell structures with clear hexagonal facets. The radial InGaN growth (shell) is confirmed by spatially resolved cathodoluminescence performed in a scanning electron microscopy as well as in scanning transmission electron microscopy. Furthermore the growth of InGaN core-shell micro pillars using an ordered array of GaN cores grown by metal organic vapor phase epitaxy as a template is demonstrated. Upon InGaN overgrowth core-shell structures with emission at around 3.0 eV are formed. With spatially resolved cathodoluminescence, an increasing In content towards the pillar top is found to be present in the InGaN shell, as indicated by a shift of CL peak position from 3.2 eV at the shell bottom to 3.0 eV at the shell top. This shift is related to variations of the local III/V ratio at the side facets. Further, the successful fabrication of a core-shell pin diode structure is demonstrated. Spatially resolved electroluminescence measurements performed on individual micro LEDs, confirm emission from the InGaN shell (lateral diode) at around 3.0 eV, as well as from the pillar top facet (axial diode) at around 2.3 eV. Finally, this work reports on the selective area growth of GaN, with and without InGaN insertion, on semi-polar (11-22) and non-polar (11-20) templates. Upon SAG the high defect density present in the GaN templates is strongly reduced as indicated by TEM and a dramatic improvement of the optical properties. In case of SAG on non-polar (11-22) templates the formation of nanostructures with a low aspect ratio took place allowing for the fabrication of high-quality, non-polar GaN pseudo-templates by coalescence of the nanostructures.
Resumo:
We study how to use quantum key distribution (QKD) in common optical network infrastructures and propose a method to overcome its distance limitations. QKD is the first technology offering information theoretic secret-key distribution that relies only on the fundamental principles of quantum physics. Point-to-point QKD devices have reached a mature industrial state; however, these devices are severely limited in distance, since signals at the quantum level (e.g. single photons) are highly affected by the losses in the communication channel and intermediate devices. To overcome this limitation, intermediate nodes (i.e. repeaters) are used. Both, quantum-regime and trusted, classical, repeaters have been proposed in the QKD literature, but only the latter can be implemented in practice. As a novelty, we propose here a new QKD network model based on the use of not fully trusted intermediate nodes, referred as weakly trusted repeaters. This approach forces the attacker to simultaneously break several paths to get access to the exchanged key, thus improving significantly the security of the network. We formalize the model using network codes and provide real scenarios that allow users to exchange secure keys over metropolitan optical networks using only passive components.
Resumo:
A technique is described for displaying distinct tissue layers of large blood vessel walls as well as measuring their mechanical strain. The technique is based on deuterium double-quantum-filtered (DQF) spectroscopic imaging. The effectiveness of the double-quantum filtration in suppressing the signal of bulk water is demonstrated on a phantom consisting of rat tail tendon fibers. Only intrafibrillar water is displayed, excluding all other signals of water molecules that reorient isotropically. One- and two-dimensional spectroscopic imaging of bovine aorta and coronary arteries show the characteristic DQF spectrum of each of the tissue layers. This property is used to obtain separate images of the outer layer, the tunica adventitia, or the intermediate layer, the tunica media, or both. To visualize the effect of elongation, the average residual quadrupole splitting <Δνq> is calculated for each pixel. Two-dimensional deuterium quadrupolar splitting images are obtained for a fully relaxed and a 55% elongated sample of bovine coronary artery. These images indicate that the strong effect of strain is associated with water molecules in the tunica adventitia whereas the DQF NMR signal of water in the tunica media is apparently strain-insensitive. After appropriate calibration, these average quadrupolar splitting images can be interpreted as strain maps.
Resumo:
We propose a realistic scheme to quantum simulate the so-far experimentally unobserved topological Mott insulator phase-an interaction-driven topological insulator-using cold atoms in an optical Lieb lattice. To this end, we study a system of spinless fermions in a Lieb lattice, exhibiting repulsive nearest-and next-to-nearest-neighbor interactions and derive the associated zero-temperature phase diagram within mean-field approximation. In particular, we analyze how the interactions can dynamically generate a charge density wave ordered, a nematic, and a topologically nontrivial quantum anomalous Hall phase. We characterize the topology of the different phases by the Chern number and discuss the possibility of phase coexistence. Based on the identified phases, we propose a realistic implementation of this model using cold Rydberg-dressed atoms in an optical lattice. The scheme, which allows one to access, in particular, the topological Mott insulator phase, robustly and independently of its exact position in parameter space, merely requires global, always-on off-resonant laser coupling to Rydberg states and is feasible with state-of-the-art experimental techniques that have already been demonstrated in the laboratory.
Resumo:
Digital magnetic recording is based on the storage of a bit of information in the orientation of a magnetic system with two stable ground states. Here we address two fundamental problems that arise when this is done on a quantized spin: quantum spin tunneling and backaction of the readout process. We show that fundamental differences exist between integer and semi-integer spins when it comes to both reading and recording classical information in a quantized spin. Our findings imply fundamental limits to the miniaturization of magnetic bits and are relevant to recent experiments where a spin-polarized scanning tunneling microscope reads and records a classical bit in the spin orientation of a single magnetic atom.
Resumo:
We discuss light–heavy hole beats observed in transient optical experiments in GaAs quantum wells in terms of a free-boson coherent state model. This approach is compared with descriptions based on few-level representations. Results lead to an interpretation of the beats as due to classical electromagnetic interference. The boson picture correctly describes photon excitation of extended states and accounts for experiments involving coherent control of the exciton density and Rayleigh scattering beating.
Resumo:
How useful is a quantum dynamical operation for quantum information processing? Motivated by this question, we investigate several strength measures quantifying the resources intrinsic to a quantum operation. We develop a general theory of such strength measures, based on axiomatic considerations independent of state-based resources. The power of this theory is demonstrated with applications to quantum communication complexity, quantum computational complexity, and entanglement generation by unitary operations.
Resumo:
The field of linear optical quantum computation (LOQC) will soon need a repertoire of experimental milestones. We make progress in this direction by describing several experiments based on Grover's algorithm. These experiments range from a relatively simple implementation using only a single nonscalable controlled- NOT (CNOT) gate to the most complex, requiring two concatenated scalable CNOT gates, and thus form a useful set of early milestones for LOQC. We also give a complete description of basic LOQC using polarization-encoded qubits, making use of many simplifications to the original scheme of Knill, Laflamme, and Milburn [E. Knill, R. Laflamme, and G. J. Milburn, Nature (London) 409, 46 (2001)].
Resumo:
We propose a model for non-ideal monitoring of the state of a coupled quantum dot qubit by a quantum tunnelling device. The non-ideality is modelled using an equivalent measurement circuit. This allows realistically available measurement results to be related to the state of the quantum system (qubit). We present a quantum trajectory that describes the stochastic evolution of the qubit state conditioned by tunnelling events (i.e. current) through the device. We calculate and compare the noise power spectra of the current in an ideal and a non-ideal measurement. The results show that when the two qubit dots are strongly coupled the non-ideal measurement cannot detect the qubit state precisely. The limitation of the ideal model for describing a realistic system maybe estimated from the noise spectra.
Resumo:
Wurtzite GaN epilayers bombarded at 300 K with 200 MeV Au-197(16+) ions are studied by a combination of transmission electron microscopy (TEM) and Rutherford backscattering/channeling spectrometry (RBS/C). Results reveal the formation of near-continuous tracks propagating throughout the entire similar to1.5-mum-thick GaN film. These tracks, similar to100 Angstrom in diameter, exhibit a large degree of structural disordering but do not appear to be amorphous. Throughout the bombarded epilayer, high-resolution TEM reveals planar defects which are parallel to the basal plane of the GaN film. The gross level of lattice disorder, as measured by RBS/C, gradually increases with increasing ion fluence up to similar to10(13) cm(-2). For larger fluences, delamination of the nitride film from the sapphire substrate occurs. Based on these results, physical mechanisms of the formation of lattice disorder in GaN in such a high electronic stopping power regime are discussed. (C) 2004 American Institute of Physics.
Resumo:
Complementing our recent work on subspace wavepacket propagation [Chem. Phys. Lett. 336 (2001) 149], we introduce a Lanczos-based implementation of the Faber polynomial quantum long-time propagator. The original version [J. Chem. Phys. 101 (1994) 10493] implicitly handles non-Hermitian Hamiltonians, that is, those perturbed by imaginary absorbing potentials to handle unwanted reflection effects. However, like many wavepacket propagation schemes, it encounters a bottleneck associated with dense matrix-vector multiplications. Our implementation seeks to reduce the quantity of such costly operations without sacrificing numerical accuracy. For some benchmark scattering problems, our approach compares favourably with the original. (C) 2004 Elsevier B.V. All rights reserved.