974 resultados para GROWTH REGULATORS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidermal growth factor receptor (EGFR) levels predict a poor outcome in human breast cancer and are most commonly associated with proliferative effects of epidermal growth factor (EGF), with little emphasis placed on motogenic responses to EGF. We found that MDA-MB-231 human breast cancer cells elicited a potent chemotactic response despite their complete lack of a proliferative response to EGF. Antagonists of EGFR ligation, the EGFR kinase, phosphatidylinositol 3'-kinase, and phospholipase C, but not the mitogen- activated protein kinases (extracellular signal-regulated protein kinase 1 and 2), blocked MDA-MB-231 chemotaxis. These findings suggest that EGF may influence human breast cancer progression via migratory pathways, the signaling for which appears to be dissociated, at least in part, from the proliferative pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to activate pro-matrix metalloproteinase (pro-MMP)-2 via membrane type-MMP is a hallmark of human breast cancer cell lines that show increased invasiveness, suggesting that MMP-2 contributes to human breast cancer progression. To investigate this, we have stably transfected pro-MMP-2 into the human breast cancer cell line MDA-MB-231, which lacks MMP-2 expression but does express its cell surface activator, membrane type 1-MMP. Multiple clones were derived and shown to produce pro-MMP-2 and to activate it in response to concanavalin A. In vitro analysis showed that the pro-MMP-2-transfected clones exhibited an increased invasive potential in Boyden chamber and Matrigel outgrowth assays, compared with the parental cells or those transfected with vector only. When inoculated into the mammary fat pad of nude mice, each of the MMP-2-tranfected clones grew faster than each of the vector controls tested. After intracardiac inoculation into nude mice, pro-MMP-2-transfected clones showed a significant increase in the incidence of metastasis to brain, liver, bone, and kidney compared with the vector control clones but not lung. Increased tumor burden was seen in the primary site and in lung metastases, and a trend toward increased burden was seen in bone, however, no change was seen in brain, liver, or kidney. This data supports a role for MMP-2 in breast cancer progression, both in the growth of primary tumors and in their spread to distant organs. MMP-2 may be a useful target for breast cancer therapy when refinement of MMP inhibitors provides for MMP-specific agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estrogen increases the ability of the estrogen-dependent MCF-7 human breast cancer cell line to both proliferate and invade through an artificial basement membrane. In studying the response of MCF-7 cells to various antiestrogens, we found that 4-hydroxytamoxifen and tamoxifen inhibited cell proliferation but increased their invasiveness. In contrast, the structurally unrelated benzothiophene antiestrogens, LY117018 and LY156758, were potent antiproliferative agents which did not stimulate invasiveness. The differential effects of these antiestrogenic agents on invasion correlated with changes in production of collagenase IV, while no significant change was seen in the chemotactic activity of the cells. Invasiveness was increased by 17β-estradiol or 4-hydroxytamoxifen after a few hours of treatment and was rapidly lost when 17β-estradiol was withdrawn. Stimulation of invasiveness with 17β-estradiol was blocked by the antiestrogen, LY117018. Cells from the MDA-MB-231 line which lacks estrogen receptors were not affected by estrogen or antiestrogen in terms of proliferation or invasion. These studies indicate that the invasiveness of MCF-7 cells is regulated by antiestrogens through the estrogen receptor and may be mediated by collagenase IV activity. Antiestrogens which reduce both the proliferation and invasiveness of these cells may be interesting new candidates for clinical application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the role of bone sialoprotein (BSP), a secreted glycoprotein normally found in bone, in breast cancer progression. To explore functions for BSP in human breast cancer invasion and metastasis, the full-length BSP cDNA was transfected into the MDA-MB-231-BAG human breast cancer cell line under the control of the CMV promoter. Clones expressing BSP and vector control clones were isolated. BSP producing clones showed increased monolayer wound healing, a faster rate of stellate outgrowth in Matrigel and increased rate of invasion into a collagen matrix when compared to control clones. Clones were also examined in models of breast cancer growth and metastasis in vivo. BSP transfected clones showed an increased rate of primary tumor growth following mammary fat pad injection of nude mice. BSP transfected clones and vector control clones metastasized to soft organs and bone at a similar rate after intra-cardiac injection as determined by real-time PCR and X-ray analysis. Although these organs were targets for both BSP transfected and non-transfected cells, the size of the metastatic lesion was shown to be significantly larger for BSP expressing clones. This was determined by real-time PCR analysis for soft organs and by X-ray analysis of bone lesions. For bone this was confirmed by intra-tibial injections of cells in nude mice. We conclude that BSP acts to drive primary and secondary tumor growth of breast cancers in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatocyte growth factor/scatter factor (HGF/SF) is a protein growth factor whose pleiotropic effects on epithelial cells include the stimulation of motility, mitosis and tubulogenesis. These responses are mediated by the cell surface tyrosine kinase receptor c-met. Because both the cytokine and receptor are found in the gastrointestinal tract, we have studied the effects of HGF/SF on transformed gut epithelial cells which express c-met. Here we describe the response of a new transformed human jejunal epithelioid cell line (HIE-7) to HGF/SF. Morphologically HIE-7 cells are immature. Their epithelial lineage was confirmed by reactivity with the epithelial specific antibodies AE1/AE3, Cam 5.2, Ber-EP4 and anti-EMA and is consistent with their expression of c-met mRNA and protein. In addition, electron microscopic analysis revealed the presence of primitive junctions and rudimentary microvilli, but features of polarization were absent. When grown on reconstituted basement membranes, HIE-7 cells formed closely associated multicellular cord-like structures adjacent to acellular spaces. However, the cells did not mature structurally, form lumen-like structures or express disaccharidase mRNA, even in the presence of recombinant HGF (rHGF). On the other hand, rHGF induced HIE-7 cells to scatter and stimulated their rapid migration in a modified wound assay. To determine whether the motogenic effect caused by rHGF is associated with HIE-7 cell invasiveness across reconstituted basement membranes, a Boyden chamber chemoinvasion assay was performed. rHGF stimulated a 10-fold increase in the number of HIE-7 cells that crossed the basement membrane barrier, while only stimulating a small increase in chemotaxis across a collagen IV matrix, suggesting that the cytokine activates matrix penetration by these cells. rHGF also stimulated the invasion of basement membranes by an undifferentiated rat intestinal cell line (IEC-6) and by two human colon cancer cell lines which are poorly differentiated (DLD-1 and SW 948). In contrast, two moderately well differentiated colon cancer cell lines (Caco-2 and HT-29) did not manifest an invasive response when exposed to rHGF. These results suggest that HGF/SF may play a significant role in the invasive behavior of anaplastic and poorly differentiated gut epithelial tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epithelial-mesenchymal transition (EMT) is a feature of migratory cellular processes in all stages of life, including embryonic development and wound healing. Importantly, EMT features cluster with disease states such as chronic fibrosis and cancer. The dissolution of the E-cadherin-mediated adherens junction (AJ) is a key preliminary step in EMT and may occur early or late in the growing epithelial tumour. This is a first step for tumour cells towards stromal invasion, intravasation, extravasation and distant metastasis. The AJ may be inactivated in EMT by directed E-cadherin cleavage; however, it is increasingly evident that the majority of AJ changes are transcriptional and mediated by an expanding group of transcription factors acting directly or indirectly to repress E-cadherin expression. A review of the current literature has revealed that these factors may regulate each other in a hierarchical pattern where Snail1 (formerly Snail) and Snail2 (formerly Slug) are initially induced, leading to the activation of Zeb family members, TCF3, TCF4, Twist, Goosecoid and FOXC2. Within this general pathway, many inter-regulatory relationships have been defined which may be important in maintaining the EMT phenotype. This may be important given the short half-life of Snail1 protein. We have investigated these inter-regulatory relationships in the mesenchymal breast carcinoma cell line PMC42 (also known as PMC42ET) and its epithelial derivative, PMC42LA. This review also discusses several newly described regulators of E-cadherin repressors including oestrogen receptor-α and new discoveries in hypoxia- and growth factor-induced EMT. Finally, we evaluated how these findings may influence approaches to current cancer treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large deformation finite element analysis has been carried out to investigate the stress-strain fields ahead of a growing crack for compact tension .a=W D 0:5/ and three-point bend .a=W D 0:1 and 0:5/ specimens under plane stress condition. The crack growth is controlled by the experimental J -integral resistance curves measured by Sun et al. The results indicate that the distributions of opening stress, equivalent stress and equivalent strain ahead of a growing crack are not sensitive to specimen geometry. For both stationary and growing cracks, similar distributions of opening stress and triaxiality can be found along the ligament. During stable crack growth, the crack-tip opening displacement (CTOD) resistance curve and the cohesive fracture energy in the fracture process zone are independent of specimen geometry and may be suitable criteria for characterizing stable crack growth in plane stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ductile-brittle fracture transition was investigated using compact tension (CT) specimens from -70oC to 40oC for a carbon steel. Large deformation finite element analysis has been carried out to simulate the stable crack growth in the compact tension (CT, a/W=0.6), three point-point bend (SE(B), a/W=0.1) and centre-cracked tension (M(T), a/W=0.5) specimens. Experimental crack tip opening displacement (CTOD) resistance curve was employed as the crack growth criterion. Ductile tearing is sensitive to constraint and tearing modulus increases with reduced constraint level. The finite element analysis shows that path-dependence of J-integral occurs from the very beginning of crack growth and ductile crack growth elevates the opening stress on the remaining ligament. Cleavage may occur after some ductile crack growth due to the increase of opening stress. For both stationary and growing cracks, the magnitude of opening stress increases with increasing in-plane constraint. The ductile-brittle transition takes place when the opening stress ahead of the crack tip reaches the local cleavage stress as the in-plane constraint of the specimen increases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammation of the spinal cord after traumatic spinal cord injury leads to destruction of healthy tissue. This “secondary degeneration” is more damaging than the initial physical damage and is the major contributor to permanent loss of functions. In our previous study we showed that combined delivery of two growth factors, vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF), significantly reduced secondary degeneration after hemi-section injury of the spinal cord in the rat. Growth factor treatment reduced the size of the lesion cavity at 30d compared to control animals and further reduced the cavity at 90d in treated animals while in control animals the lesion cavity continued to increase in size. Growth factor treatment also reduced astrogliosis and reduced macroglia/macrophage activation around the injury site. Treatment with individual growth factors alone had similar effects to control treatments. The present study investigated whether growth factor treatment would improve locomotor behaviour after spinal contusion injury, a more relevant preclinical model of spinal cord injury. The growth factors were delivered for the first 7d to the injury site via osmotic minipump. Locomotor behaviour was monitored at 1-28d after injury using the BBB score and at 30d using automated gait analysis. Treated animals had BBB scores of 18; Control animals scored 10. Treated animals had significantly reduced lesion cavities and reduced macroglia/macrophage activation around the injury site. We conclude that growth factor treatment preserved spinal cord tissues after contusion injury, thereby allowing functional recovery. This treatment has the potential to significantly reduce the severity of human spinal cord injuries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The buoyancy that the Indian economy experienced between 2000 and 2010, in spite of the global downturn of 2008, is no longer a reality. Growth projections for 2012-13 have been reassessed to 6.5 per cent. This is still higher than most other developed economies of the world (see Figure 1.1), however the growth rate is slowing. The World Bank in its recent forecasts1 expects India’s growth rates not to extend beyond 7.2 % and 7.4 % in the years 2013-14 and 2014-15, respectively. Similarly, the Planning Commission has scaled down the growth target for the 12th Five Year Plan (2012-17) from 9% to 8%. Different reports note different rates, but the consistent message is that the projection of India’s economy is on a downward trend...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the effects of the matrix metalloproteinase 13 (MMP13)-selective inhibitor, 5-(4-{4-[4-(4-fluorophenyl)-1,3-oxazol-2-yl]phenoxy}phenoxy)-5-(2-methoxyethyl) pyrimidine-2,4,6(1H,3H,5H)-trione (Cmpd-1), on the primary tumor growth and breast cancer-associated bone remodeling using xenograft and syngeneic mouse models. We used human breast cancer MDA-MB-231 cells inoculated into the mammary fat pad and left ventricle of BALB/c Nu/Nu mice, respectively, and spontaneously metastasizing 4T1.2-Luc mouse mammary cells inoculated into mammary fat pad of BALB/c mice. In a prevention setting, treatment with Cmpd-1 markedly delayed the growth of primary tumors in both models, and reduced the onset and severity of osteolytic lesions in the MDA-MB-231 intracardiac model. Intervention treatment with Cmpd-1 on established MDA-MB-231 primary tumors also significantly inhibited subsequent growth. In contrast, no effects of Cmpd-1 were observed on soft organ metastatic burden following intracardiac or mammary fat pad inoculations of MDA-MB-231 and 4T1.2-Luc cells respectively. MMP13 immunostaining of clinical primary breast tumors and experimental mice tumors revealed intra-tumoral and stromal expression in most tumors, and vasculature expression in all. MMP13 was also detected in osteoblasts in clinical samples of breast-to-bone metastases. The data suggest that MMP13-selective inhibitors, which lack musculoskeletal side effects, may have therapeutic potential both in primary breast cancer and cancer-induced bone osteolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kaposi's sarcoma (KS) is a relatively low grade neoplasm, classically occurring in the skin of elderly men. A more virulent and invasive form of Kaposi's sarcoma has been described in patients with acquired immune deficiency syndrome (AIDS). The origin and identification of the tumor cells in these lesions is controversial. Here we have studied the behavior of cells derived from KS lesions in an in vitro assay which measures the ability of cells to invade through a reconstituted basement membrane. In agreement with previous work, KS cells obtained under selective culture conditions were invasive showing activity comparable to that of malignant tumor cells. Normal fibroblasts, smooth muscle cells, and endothelial cells did not demonstrate invasive behavior under the same experimental conditions. To characterize further the nature of the KS cells we tested the chemotactic response of cells from the most invasive line to a variety of growth factors and compared their response to those of fibroblasts, smooth muscle, and endothelial cells. These studies suggest that normal cells respond to a unique repertoire of chemotactic factors. The chemotactic response of the KS cells most closely resembled that of smooth muscle cells and was quite distinct from endothelial cells. These results indicate that the KS-derived cultures contain invasive cells with a smooth muscle cell-like phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frizzled (FZD) receptors have a conserved N-terminal extracellular cysteine-rich domain that interacts with Wnts and co-expression of the receptor ectodomain can antagonize FZD-mediated signalling. Using the ectodomain as an antagonist we have modulated endogenous FZD7 signalling in the moderately differentiated colon adenocarcinoma cell line, SK-CO-1. Unlike the parental cell line, which grows as tightly associated adherent cell clusters, the FZD7 ectodomain expressing cells display a spread out morphology and grow as a monolayer in tissue culture. This transition in morphology was associated with decreased levels of plasma membrane-associated E-cadherin and β-catenin, localized increased levels of vimentin and redistribution of α6 integrin to cellular processes in the FZD7 ectodomain expressing cells. The morphological and phenotype changes induced by FZD7 ectodomain expression in SK-CO-1 cells is thus consistent with the cells undergoing an epithelial-to-mesenchymal-like transition. Furthermore, initiation of tumor formation in a xenograft tumor growth assay was attenuated in the FZD7 ectodomain expressing cells. Our results indicate a pivotal role for endogenous FZD7 in morphology transitions that are associated with colon tumor initiation and progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Membrane type 1 metalloprotease (MT1-MMP) is a transmembrane metalloprotease that plays a major role in the extracellular matrix remodeling, directly by degrading several of its components and indirectly by activating pro-MMP2. We investigated the effects of MT1-MMP overexpression on in vitro and in vivo properties of human breast adenocarcinoma MCF7 cells, which do not express MT1-MMP or MMP-2. MT1-MMP and MMP-2 cDNAs were either transfected alone or cotransfected. All clones overexpressing MT1-MMP 1) were able to activate endogenous or exogenous pro-MMP-2, 2) displayed an enhanced in vitro invasiveness through matrigel-coated filters independent of MMP-2 transfection, 3) induced the rapid development of highly vascularized tumors when injected subcutanously in nude mice, and 4) promoted blood vessels sprouting in the rat aortic ring assay. These effects were observed in all clones overexpressing MT1-MMP regardless of MMP-2 expression levels, suggesting that the production of MMP-2 by tumor cells themselves does not play a critical role in these events. The angiogenic phenotype of MT1-MMP-producing cells was associated with an up-regulation of VEGF expression. These results emphasize the importance of MT1-MMP during tumor angiogenesis and open new opportunities for the development of antiangiogenic strategies combining inhibitors of MT1-MMP and VEGF antagonists. - Sounni, N. E., Devy, L., Hajitou, A., Frankenne, F., Munaut, C., Gilles, C., Deroanne, C., Thompson, E. W., Foidart, J. M., Noel, A. MT1-MMP expression promotes tumor growth and angiogenesis through an up-regulation of vascular endothelial growth factor expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The expression of neutrophil gelatinase-associated lipocalin (NGAL) has been shown to be upregulated in ovarian cancer cells. In this study, we report that the expression of immunoreactive NGAL (irNGAL) in ovarian tumors changes with disease grade and that this change is reflected in the concentration of NGAL in peripheral blood. A total of 59 ovarian tissues including normal, benign, borderline malignant and grades 1, 2 and 3 malignant were analyzed using immunohistochemistry. irNGAL was not present in normal ovaries and the NGAL expression was weak to moderate in benign tissues. Both borderline and grade 1 tumors displayed the highest amount of NGAL expression with moderate to strong staining, whereas in grade 2 and 3 tumors, the extent of staining was significantly less (p < 0.01) and staining intensity was weak to moderate. Staining in all cases was confined to the epithelium. NGAL expression was analyzed by ELISA in 62 serum specimens from normal and different grades of cancer patients. Compared to control samples, the NGAL concentration was 2 and 2.6-fold higher in the serum of patients with benign tumors and cancer patients with grade 1 tumors (p < 0.05) and that result was consistent with the expression of NGAL performed by Western blot. NGAL expression was evaluated by Western blot in an immortalized normal ovarian cell line (IOSE29) as well as ovarian cancer cell lines. Moderate to strong expression of NGAL was observed in epithelial ovarian cancer cell lines SKOV3 and OVCA433 while no expression of NGAL was evident in normal IOSE29 and mesenchyme-like OVHS1, PEO.36 and HEY cell lines. NGAL expression was downregulated in ovarian cancer cell lines undergoing epithelio-mesenchymal transition (EMT) induced by epidermal growth factor (EGF). Down-regulation of NGAL expression correlated with the upregulation of vimentin expression, enhanced cell dispersion and downregulation of E-cadherin expression, some of the hallmarks of EMT. EGF-induced EMT phenotypes were inhibited in the presence of AG1478, an inhibitor of EGF receptor tyrosine kinase activity. These data indicate that NGAL may be a good marker to monitor changes of benign to premalignant and malignant ovarian tumors and that the molecule may be involved in the progression of epithelial ovarian malignancies.