912 resultados para GENERALIZED-GRADIENT-APPROXIMATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses how numerical gradient estimation methods may be used in order to reduce the computational demands on a class of multidimensional clustering algorithms. The study is motivated by the recognition that several current point-density based cluster identification algorithms could benefit from a reduction of computational demand if approximate a-priori estimates of the cluster centres present in a given data set could be supplied as starting conditions for these algorithms. In this particular presentation, the algorithm shown to benefit from the technique is the Mean-Tracking (M-T) cluster algorithm, but the results obtained from the gradient estimation approach may also be applied to other clustering algorithms and their related disciplines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of adjusting the weights (learning) in multilayer feedforward neural networks (NN) is known to be of a high importance when utilizing NN techniques in various practical applications. The learning procedure is to be performed as fast as possible and in a simple computational fashion, the two requirements which are usually not satisfied practically by the methods developed so far. Moreover, the presence of random inaccuracies are usually not taken into account. In view of these three issues, an alternative stochastic approximation approach discussed in the paper, seems to be very promising.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article introduces generalized beta-generated (GBG) distributions. Sub-models include all classical beta-generated, Kumaraswamy-generated and exponentiated distributions. They are maximum entropy distributions under three intuitive conditions, which show that the classical beta generator skewness parameters only control tail entropy and an additional shape parameter is needed to add entropy to the centre of the parent distribution. This parameter controls skewness without necessarily differentiating tail weights. The GBG class also has tractable properties: we present various expansions for moments, generating function and quantiles. The model parameters are estimated by maximum likelihood and the usefulness of the new class is illustrated by means of some real data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key idea in the study of the Atlantic meridional overturning circulation (AMOC) is that its strength is proportional to the meridional density gradient, or more precisely, to the strength of the meridional pressure gradient. A physical basis that would tell us how to estimate the relevant meridional pressure gradient locally from the density distribution in numerical ocean models to test such an idea, has been lacking however. Recently, studies of ocean energetics have suggested that the AMOC is driven by the release of available potential energy (APE) into kinetic energy (KE), and that such a conversion takes place primarily in the deep western boundary currents. In this paper, we develop an analytical description linking the western boundary current circulation below the interface separating the North Atlantic Deep Water (NADW) and Antarctic Intermediate Water (AAIW) to the shape of this interface. The simple analytical model also shows how available potential energy is converted into kinetic energy at each location, and that the strength of the transport within the western boundary current is proportional to the local meridional pressure gradient at low latitudes. The present results suggest, therefore, that the conversion rate of potential energy may provide the necessary physical basis for linking the strength of the AMOC to the meridional pressure gradient, and that this could be achieved by a detailed study of the APE to KE conversion in the western boundary current.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the general response theory recently proposed by Ruelle for describing the impact of small perturbations to the non-equilibrium steady states resulting from Axiom A dynamical systems. We show that the causality of the response functions entails the possibility of writing a set of Kramers-Kronig (K-K) relations for the corresponding susceptibilities at all orders of nonlinearity. Nonetheless, only a special class of directly observable susceptibilities obey K-K relations. Specific results are provided for the case of arbitrary order harmonic response, which allows for a very comprehensive K-K analysis and the establishment of sum rules connecting the asymptotic behavior of the harmonic generation susceptibility to the short-time response of the perturbed system. These results set in a more general theoretical framework previous findings obtained for optical systems and simple mechanical models, and shed light on the very general impact of considering the principle of causality for testing self-consistency: the described dispersion relations constitute unavoidable benchmarks that any experimental and model generated dataset must obey. The theory exposed in the present paper is dual to the time-dependent theory of perturbations to equilibrium states and to non-equilibrium steady states, and has in principle similar range of applicability and limitations. In order to connect the equilibrium and the non equilibrium steady state case, we show how to rewrite the classical response theory by Kubo so that response functions formally identical to those proposed by Ruelle, apart from the measure involved in the phase space integration, are obtained. These results, taking into account the chaotic hypothesis by Gallavotti and Cohen, might be relevant in several fields, including climate research. In particular, whereas the fluctuation-dissipation theorem does not work for non-equilibrium systems, because of the non-equivalence between internal and external fluctuations, K-K relations might be robust tools for the definition of a self-consistent theory of climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we perform an analytical and numerical study of Extreme Value distributions in discrete dynamical systems. In this setting, recent works have shown how to get a statistics of extremes in agreement with the classical Extreme Value Theory. We pursue these investigations by giving analytical expressions of Extreme Value distribution parameters for maps that have an absolutely continuous invariant measure. We compare these analytical results with numerical experiments in which we study the convergence to limiting distributions using the so called block-maxima approach, pointing out in which cases we obtain robust estimation of parameters. In regular maps for which mixing properties do not hold, we show that the fitting procedure to the classical Extreme Value Distribution fails, as expected. However, we obtain an empirical distribution that can be explained starting from a different observable function for which Nicolis et al. (Phys. Rev. Lett. 97(21): 210602, 2006) have found analytical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of “distance to instability” of a system matrix is generalized to system pencils which arise in descriptor (semistate) systems. Difficulties arise in the case of singular systems, because the pencil can be made unstable by an infinitesimal perturbation. It is necessary to measure the distance subject to restricted, or structured, perturbations. In this paper a suitable measure for the stability radius of a generalized state-space system is defined, and a computable expression for the distance to instability is derived for regular pencils of index less than or equal to one. For systems which are strongly controllable it is shown that this measure is related to the sensitivity of the poles of the system over all feedback matrices assigning the poles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robustness in multi-variable control system design requires that the solution to the design problem be insensitive to perturbations in the system data. In this paper we discuss measures of robustness for generalized state-space, or descriptor, systems and describe algorithmic techniques for optimizing robustness for various applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vekua operators map harmonic functions defined on domain in \mathbb R2R2 to solutions of elliptic partial differential equations on the same domain and vice versa. In this paper, following the original work of I. Vekua (Ilja Vekua (1907–1977), Soviet-Georgian mathematician), we define Vekua operators in the case of the Helmholtz equation in a completely explicit fashion, in any space dimension N ≥ 2. We prove (i) that they actually transform harmonic functions and Helmholtz solutions into each other; (ii) that they are inverse to each other; and (iii) that they are continuous in any Sobolev norm in star-shaped Lipschitz domains. Finally, we define and compute the generalized harmonic polynomials as the Vekua transforms of harmonic polynomials. These results are instrumental in proving approximation estimates for solutions of the Helmholtz equation in spaces of circular, spherical, and plane waves.