922 resultados para GENE POLYMORPHISM
Resumo:
The human gene deleted in malignant brain tumors 1 (DMBT1) is considered to play a role in tumorigenesis and pathogen defense. It encodes a protein with multiple scavenger receptor cysteine-rich (SRCR) domains, which are involved in recognition and binding of a broad spectrum of bacterial pathogens. The SRCR domains are encoded by highly homologous repetitive exons, whose number in humans may vary from 8 to 13 due to genetic polymorphism. Here, we characterized the porcine DMBT1 gene on the mRNA and genomic level. We assembled a 4.5 kb porcine DMBT1 cDNA sequence from RT-PCR amplified seminal vesicle RNA. The porcine DMBT1 cDNA contains an open reading frame of 4050 nt. The transcript gives rise to a putative polypeptide of 1349 amino acids with a calculated mass of 147.9 kDa. Compared to human DMBT1, it contains only four N-terminal SRCR domains. Northern blotting revealed transcripts of approximately 4.7 kb in size in the tissues analyzed. Analysis of ESTs suggested the existence of secreted and transmembrane variants. The porcine DMBT1 gene spans about 54 kb on chromosome 14q28-q29. In contrast to the characterized cDNA, the genomic BAC clone only contained 3 exons coding for N-terminal SRCR domains. In different mammalian DMBT1 orthologs large interspecific differences in the number of SRCR exons and utilization of the transmembrane exon exist. Our data suggest that the porcine DMBT1 gene may share with the human DMBT1 gene additional intraspecific variations in the number of SRCR-coding exons.
Resumo:
A total of 167 sheep belonging to the Estonian whiteheaded mutton, Estonian blackheaded mutton, Lithuanian coarsewool native, Lithuanian blackface and Latvian darkheaded mutton breeds, and a population of sheep kept isolated on the Estonian island of Ruhnu, were sequence-analysed for polymorphisms in the prion protein (PrP) gene, to determine their genotype and the allele frequencies of polymorphisms in PrP known to confer resistance to scrapie. A 939 base pair fragment of exon 3 from the PrP gene was amplified by pcr and analysed by direct sequencing. For animals showing polymorphism at two nucleotide positions, both haplotypes of these double-heterozygous genotypes were further verified by pcr cloning and sequence analysis. Known polymorphisms were observed at codons 136, 154 and 171, and six different haplotypes (arr, ahq, arh, ahr, arq and vrq) were determined. On the basis of these polymorphisms, the six populations of sheep possessed the resistant arr haplotype at different frequencies. The high-risk arq haplotype occurred in high frequencies in all six populations, but vrq, the haplotype carrying the highest risk, occurred at low frequencies and in only three of the populations.
Resumo:
BACKGROUND: IL-18 is a pleiotrophic cytokine involved in both, T-helper type 1 (Th1) and Th2 differentiation. Recently genetic variants in the IL-18 gene have been associated with increased risk of atopy and asthma. OBJECTIVE: To examine the relationship of a genetic, haplotype-tagging promotor variant -137G/C in the IL-18 gene with atopic asthma in a large, well-characterized and population-based study of adults. METHODS: Prospective cohort study design was used to collect interview and biological measurement data at two examination time-points 11 years apart. Multivariate logistic regression analysis was used to assess the association of genotype with asthma and atopy. RESULTS: The G-allele of the IL-18 promotor variant (-137G/C) was associated with a markedly increased risk for the prevalence of physician-diagnosed asthma with concomitant skin reactivity to common allergens. Stratification of the asthma cases by skin reactivity to common allergens revealed an exclusive association of IL-18 -137 G-allele with an increased prevalence of atopic asthma (adjusted odds ratio (OR): 3.63; 95% confidence interval: (1.64-8.02) for GC or GG carriers vs. CC carriers), and no according association with asthma and concomitant negative skin reactivity (adjusted OR: 1.13; 0.66-1.94). The interaction between IL-18 -137G/C genotype and positive skin prick test was statistically significant (P=0.029). None of 74 incident asthma cases with atopy at baseline exhibited the CC genotype. CONCLUSION: Our results strongly suggest that this variant of the IL-18 gene is an important genetic determinant involved in the development of atopic asthma.
Resumo:
We have identified a novel cytosine/thymidine polymorphism of the human steroidogenic acute regulatory (StAR) gene promoter located 3 bp downstream of the steroidogenic factor-1 (SF-1)-binding site and 9 bp upstream of the TATA box (ATTTAAG). Carriers of this mutation have a high prevalence of primary aldosteronism. In transfection experiments, basal StAR promoter activity was unaltered by the mutation in murine Y-1 cells and human H295R cells. In Y-1 cells, forskolin (25 microM, 6 h) significantly increased wild-type promoter activity to 230+/-33% (P<0.05, n=4). In contrast, forskolin increased mutated promoter activity only to 150+/-27%, with a significant 35% reduction compared to wild type (P<0.05, n=3). In H295R cells, angiotensin II (AngII; 10 nM) increased wild-type StAR promoter activity to 265+/-22% (P<0.01, n=3), while mutated StAR promoter activity in response to AngII only reached 180+/-29% of controls (P< 0.01, n=3). Gel mobility shift assays show the formation of two additional complexes with the mutated promoter: one with the transcription repressor DAX-1 and another with a yet unidentified factor, which strongly binds the SF-1 response element. Thus, this novel mutation in the human StAR promoter is critically involved in the regulation of StAR gene expression and is associated with reduced promoter activity, a finding relevant for adrenal steroid response to physiological stimulators.
Resumo:
BACKGROUND: Recently, an association of the NFKB1 polymorphism -94ins/delATTG with ulcerative colitis (UC) has been reported. This 4-bp insertion/deletion polymorphism is localized in the promoter region of the NFKB1 gene and appears to be functionally relevant. The aim of the present study was to confirm the association of the -94ins/delATTG (W/D) NFKB1 promoter polymorphism with UC in a population of German origin and to test for a potential association with Crohn's disease (CD). Furthermore, potential interactions of the -94ins/delATTG polymorphism with the IKBL and the IL-1RN genes should be determined. MATERIALS AND METHODS: The study population comprised 630 patients with CD, 365 patients with UC, and 974 healthy controls. Genotyping was performed using polymerase chain reaction and restriction fragment length polymorphism analysis. For statistical evaluation, the chi-square test and the Fisher exact test were used. RESULTS: No significant association of the W/D NFKB1 polymorphism with CD or UC was detected. In addition, no significant interactions between the -94ins/delATTG NFKB1 polymorphism and polymorphisms within the IKBL and the IL-1RN genes, respectively, were found in CD or UC. Also, no significant interactions of the NFKB1 polymorphism with mutations of the CARD15/NOD2 gene and with clinical phenotypes were detected in CD. Moreover, no associations of the NFKB1 polymorphism were found in UC depending on disease localization. CONCLUSIONS: The present study could not confirm the reported association of the -94ins/delATTG NFKB1 polymorphism with UC and also found no evidence for a role of this polymorphism in CD. The results do not give evidence for a role of this NFKB1 polymorphism in the pathogenesis of UC and CD.
Resumo:
BACKGROUND: The KEL2/KEL1 (k/K) blood group polymorphism represents 578C>T in the KEL gene and Thr193Met in the Kell glycoprotein. Anti-KEL1 can cause severe hemolytic disease of the fetus and newborn. Molecular genotyping for KEL*1 is routinely used for assessing whether a fetus is at risk. Red blood cells (RBCs) from a KEL:1 blood donor (D1) were found to have abnormal KEL1 expression during evaluation of anti-KEL1 reagents. STUDY DESIGN AND METHODS: Kell genotyping methods, including KEL exon 6 direct sequencing, were applied. KEL cDNA from D1 was sequenced. Flow cytometry was used to assess KEL1 and KEL2 RBC expression. RESULTS: RBCs from the donor, her mother, and an unrelated donor gave weak or negative reactions with some anti-KEL1 reagents. Other Kell-system antigens appeared normal. The three individuals were homozygous for KEL C578 (KEL*2) but heterozygous for a 577A>T transversion, encoding Ser193. They appeared to be KEL*2 homozygotes by routine genotyping methods. Flow cytometry revealed weak KEL1 expression and normal KEL2, similar to that of KEL*2 homozygotes. CONCLUSION: Ser193 in the Kell glycoprotein appears to result in expression of abnormal KEL1, in addition to KEL2. The mutation is not detected by routine Kell genotyping methods and, because of unpredicted KEL1 expression, could lead to a misdiagnosis.
Resumo:
Coat color dilution in several breeds of dog is characterized by a specific pigmentation phenotype and sometimes accompanied by hair loss and recurrent skin inflammation, the so-called color dilution alopecia or black hair follicular dysplasia. Coat color dilution (d) is inherited as a Mendelian autosomal recessive trait. In a previous study, MLPH polymorphisms showed perfect cosegregation with the dilute phenotype within breeds. However, different dilute haplotypes were found in different breeds, and no single polymorphism was identified in the coding sequence that was likely to be causative for the dilute phenotype. We resequenced the 5'-region of the canine MLPH gene and identified a strong candidate single nucleotide polymorphism within the nontranslated exon 1, which showed perfect association to the dilute phenotype in 65 dilute dogs from 7 different breeds. The A/G polymorphism is located at the last nucleotide of exon 1 and the mutant A-allele is predicted to reduce splicing efficiency 8-fold. An MLPH mRNA expression study using quantitative reverse transcriptase-polymerase chain reaction confirmed that dd animals had only about approximately 25% of the MLPH transcript compared with DD animals. These results provide preliminary evidence that the reported regulatory MLPH mutation might represent a causal mutation for coat color dilution in dogs.
Resumo:
Hereditary hair length variability in mice and dogs is caused by mutations within the fibroblast growth factor 5 (FGF5) gene. The aim of this study was to evaluate the feline FGF5 orthologue as a functional candidate gene for the long hair phenotype in cats, which is recessive to short hair. We amplified the feline FGF5 cDNA and characterised two alternatively spliced transcripts by RT-PCR. Comparative cDNA and genomic DNA sequencing of long- and short-haired cats revealed four non-synonymous polymorphisms in the FGF5 coding sequence. A missense mutation (AM412646:c.194C>A) was found in the homozygous state in 25 long-haired Somali, Persian, Maine Coon, Ragdoll and crossbred cats. Fifty-five short-haired cats had zero or one copy of this allele. Additionally, we found perfect co-segregation of the c.194C>A mutation within two independent pedigrees segregating for hair length. A second FGF5 exon 1 missense mutation (AM412646:c.182T>A) was found exclusively in long-haired Norwegian Forest cats. The c.182T>A mutation probably represents a second FGF5 mutation responsible for long hair in cats. In addition to the c.194C>A mutation, a frameshift mutation (AM412646:c.474delT) was found with a high frequency in the long-haired Maine Coon breed. Finally, a missense mutation (AM412646:c.475A>C) was also associated with the long-haired phenotype in some breeds. However, as one short-haired cat was homozygous for this polymorphism, it is unlikely that it has a functional role in the determination of hair length.
Functional polymorphism in ABCA1 influences age of symptom onset in coronary artery disease patients
Resumo:
ATP-binding-cassette-transporter-A1 (ABCA1) plays a pivotal role in intracellular cholesterol removal, exerting a protective effect against atherosclerosis. ABCA1 gene severe mutations underlie Tangier disease, a rare Mendelian disorder that can lead to premature coronary artery disease (CAD), with age of CAD onset being two decades earlier in mutant homozygotes and one decade earlier in heterozygotes than in mutation non-carriers. It is unknown whether common polymorphisms in ABCA1 could influence age of symptom onset of CAD in the general population. We examined common promoter and non-synonymous coding polymorphisms in relation to age of symptom onset in a group of CAD patients (n = 1164), and also carried out in vitro assays to test effects of the promoter variations on ABCA1 promoter transcriptional activity and effects of the coding variations on ABCA1 function in mediating cellular cholesterol efflux. Age of symptom onset was found to be associated with the promoter - 407G > C polymorphism, being 2.82 years higher in C allele homozygotes than in G allele homozygotes and intermediate in heterozygotes (61.54, 59.79 and 58.72 years, respectively; P = 0.002). In agreement, patients carrying ABCA1 haplotypes containing the -407C allele had higher age of symptom onset. Patients of the G/G or G/C genotype of the -407G > C polymorphism had significant coronary artery stenosis (>75%) at a younger age than those of the C/C genotype (P = 0.003). Reporter gene assays showed that ABCA1 haplotypes bearing the -407C allele had higher promoter activity than haplotypes with the -407G allele. Functional analyses of the coding polymorphisms showed an effect of the V825I substitution on ABCA1 function, with the 825I variant having higher activity in mediating cholesterol efflux than the wild-type (825V). A trend towards higher symptom onset age in 825I allele carriers was observed. The data indicate an influence of common ABCA1 functional polymorphisms on age of symptom onset in CAD patients.
Resumo:
The maintenance of colour polymorphisms within populations has been a long-standing interest in evolutionary ecology. African cichlid fish contain some of the most striking known cases of this phenomenon. Intrasexual selection can be negative frequency dependent when males bias aggression towards phenotypically similar rivals, stabilizing male colour polymorphisms. We propose that where females are territorial and competitive, aggression biases in females may also promote coexistence of female morphs. We studied a polymorphic population of the cichlid fish Neochromis omnicaeruleus from Lake Victoria, in which three distinct female colour morphs coexist: one plain brown and two blotched morphs. Using simulated intruder choice tests in the laboratory, we show that wild-caught females of each morph bias aggression towards females of their own morph, suggesting that females of all three morphs may have an advantage when their morph is locally the least abundant. This mechanism may contribute to the establishment and stabilization of colour polymorphisms. Next, by crossing the morphs, we generated sisters belonging to different colour morphs. We find no sign of aggression bias in these sisters, making pleiotropy unlikely to explain the association between colour and aggression bias in wild fish, which is maintained in the face of gene flow. We conclude that female-female aggression may be one important force for stabilizing colour polymorphism in cichlid fish.
Resumo:
BACKGROUND: As only a minority of alcoholics develop cirrhosis, polymorphic genes, whose products are involved in fibrosis development were suggested to confer individual susceptibility. We tested whether a functional promoter polymorphism in the gene encoding matrix metalloproteinase-3 (MMP-3; 1171 5A/6A) was associated liver cirrhosis in alcoholics. METHODS: Independent cohorts from the UK and Germany were studied. (i) UK cohort: 320 alcoholic cirrhotics and 183 heavy drinkers without liver damage and (ii) German cohort: 149 alcoholic cirrhotics, 220 alcoholic cirrhotics who underwent liver transplantation and 151 alcoholics without liver disease. Patients were genotyped for MMP-3 variants by restriction fragment length polymorphism, single strand confirmation polymorphism, and direct sequencing. In addition, MMP-3 transcript levels were correlated with MMP-3 genotype in normal liver tissues. RESULTS: Matrix metalloproteinase-3 genotype and allele distribution in all 1023 alcoholic patients were in Hardy-Weinberg equilibrium. No significant differences in MMP-3 genotype and allele frequencies were observed either between alcoholics with or without cirrhosis. There were no differences in hepatic mRNA transcription levels according to MMP-3 genotype. CONCLUSIONS: Matrix metalloproteinase-3 1171 promoter polymorphism plays no role in the genetic predisposition for liver cirrhosis in alcoholics. Stringently designed candidate gene association studies are required to exclude chance observations.
Resumo:
INTRODUCTION: Liver cirrhosis develops only in a minority of heavy drinkers. Genetic factors may account for some variation in the progression of fibrosis in alcoholic liver disease (ALD). Transforming growth factor beta 1 (TGFbeta1) is a key profibrogenic cytokine in fibrosis and its gene contains several polymorphic sites. A single nucleotide polymorphism at codon 25 has been suggested to affect fibrosis progression in patients with chronic hepatitis C virus infection, fatty liver disease, and hereditary hemochromatosis. Its contribution to the progression of ALD has not been investigated sufficiently so far. PATIENTS AND METHODS: One-hundred-and-fifty-one heavy drinkers without apparent ALD, 149 individuals with alcoholic cirrhosis, and 220 alcoholic cirrhotics who underwent liver transplantation (LTX) were genotyped for TGFbeta1 codon 25 variants. RESULTS: Univariate analysis suggested that genotypes Arg/Pro or Pro/Pro are associated with decompensated liver cirrhosis requiring LTX. However, after adjusting for patients' age these genotypes did not confer a significant risk for cirrhosis requiring LTX. CONCLUSION: TGFbeta1 codon 25 genotypes Arg/Pro or Pro/Pro are not associated with alcoholic liver cirrhosis. Our study emphasizes the need for adequate statistical methods and accurate study design when evaluating the contribution of genetic variants to the course of chronic liver diseases.
Resumo:
Monocarboxylate transporter 8 (MCT8 or SLC16A2) is important for the neuronal uptake of triiodothyronine (T3) in its function as a specific and active transporter of thyroid hormones across the cell membrane, thus being essential for human brain development. We report on a German male with Allan-Herndon-Dudley syndrome presenting with severe intellectual and motor disability, paroxysmal dyskinesia combined with truncal muscular hypotonia, and peripheral muscular hypertonia at his current age of 9 years. Additionally, the patient has a lesion in the left putamen region revealed by magnetic resonance imaging and elevated serum T3 levels. The male appeared to have a hemizygous mutation (R271H) in the MCT8 gene that was sequenced directly from genomic DNA and occurred de novo in the maternal germline, as both his mother and his sister were not carriers of the mutation. Ruling out a common polymorphism, 50 normal individuals of the same ethnic background did not harbour the mutation. The identified MCT8 gene mutation (R271H) is very likely to be the genetic cause for neuronal hypothyroidism despite elevated serum T3 levels.
Resumo:
The development of a completely annotated sheep genome sequence is a key need for understanding the phylogenetic relationships and genetic diversity among the many different sheep breeds worldwide and for identifying genes controlling economically and physiologically important traits. The ovine genome sequence assembly will be crucial for developing optimized breeding programs based on highly productive, healthy sheep phenotypes that are adapted to modern breeding and production conditions. Scientists and breeders around the globe have been contributing to this goal by generating genomic and cDNA libraries, performing genome-wide and trait-associated analyses of polymorphism, expression analysis, genome sequencing, and by developing virtual and physical comparative maps. The International Sheep Genomics Consortium (ISGC), an informal network of sheep genomics researchers, is playing a major role in coordinating many of these activities. In addition to serving as an essential tool for monitoring chromosome abnormalities in specific sheep populations, ovine molecular cytogenetics provides physical anchors which link and order genome regions, such as sequence contigs, genes and polymorphic DNA markers to ovine chromosomes. Likewise, molecular cytogenetics can contribute to the process of defining evolutionary breakpoints between related species. The selective expansion of the sheep cytogenetic map, using loci to connect maps and identify chromosome bands, can substantially contribute to improving the quality of the annotated sheep genome sequence and will also accelerate its assembly. Furthermore, identifying major morphological chromosome anomalies and micro-rearrangements, such as gene duplications or deletions, that might occur between different sheep breeds and other Ovis species will also be important to understand the diversity of sheep chromosome structure and its implications for cross-breeding. To date, 566 loci have been assigned to specific chromosome regions in sheep and the new cytogenetic map is presented as part of this review. This review will also summarize the current cytogenomic status of the sheep genome, describe current activities in the sheep cytogenomics research sector, and will discuss the cytogenomics data in context with other major sheep genomics projects.
Resumo:
Associations between the central serotonergic and γ-aminobutyric acid (GABA) systems play key roles in the prefrontal cortical regulation of emotion and cognition and in the pathophysiology and pharmacotherapy of highly prevalent psychiatric disorders. The goal of this study was to test the effects of common variants of the tryptophan hydroxylase isoform 2 (TPH2) gene on GABA concentration in the prefrontal cortex (PFC) using magnetic resonance spectroscopy. In this study involving 64 individuals, we examined the associations between prefrontal cortical GABA concentration and 12 single nucleotide polymorphisms (SNPs) spanning the TPH2 gene, including rs4570625 (−703 G/T SNP), a potentially functional TPH2 polymorphism that has been associated with decreased TPH2 mRNA expression and panic disorder. Our results revealed a significant association between increased GABA concentration in the PFC and the T-allele frequencies of two TPH2 SNPs, namely rs4570625 (−703 G/T) and rs2129575 (p≤0.0004) and the C-allele frequency of one TPH2 SNP, namely rs1386491 (p = 0.0003) in female subjects. We concluded that rs4570625 (−703 G/T), rs2129575 and rs1386491 play a significant role in GABAergic neurotransmission and may contribute to the sex-specific dysfunction of the GABAergic system in the PFC.