933 resultados para Functions of real variables
A priori parameterisation of the CERES soil-crop models and tests against several European data sets
Resumo:
Mechanistic soil-crop models have become indispensable tools to investigate the effect of management practices on the productivity or environmental impacts of arable crops. Ideally these models may claim to be universally applicable because they simulate the major processes governing the fate of inputs such as fertiliser nitrogen or pesticides. However, because they deal with complex systems and uncertain phenomena, site-specific calibration is usually a prerequisite to ensure their predictions are realistic. This statement implies that some experimental knowledge on the system to be simulated should be available prior to any modelling attempt, and raises a tremendous limitation to practical applications of models. Because the demand for more general simulation results is high, modellers have nevertheless taken the bold step of extrapolating a model tested within a limited sample of real conditions to a much larger domain. While methodological questions are often disregarded in this extrapolation process, they are specifically addressed in this paper, and in particular the issue of models a priori parameterisation. We thus implemented and tested a standard procedure to parameterize the soil components of a modified version of the CERES models. The procedure converts routinely-available soil properties into functional characteristics by means of pedo-transfer functions. The resulting predictions of soil water and nitrogen dynamics, as well as crop biomass, nitrogen content and leaf area index were compared to observations from trials conducted in five locations across Europe (southern Italy, northern Spain, northern France and northern Germany). In three cases, the model’s performance was judged acceptable when compared to experimental errors on the measurements, based on a test of the model’s root mean squared error (RMSE). Significant deviations between observations and model outputs were however noted in all sites, and could be ascribed to various model routines. In decreasing importance, these were: water balance, the turnover of soil organic matter, and crop N uptake. A better match to field observations could therefore be achieved by visually adjusting related parameters, such as field-capacity water content or the size of soil microbial biomass. As a result, model predictions fell within the measurement errors in all sites for most variables, and the model’s RMSE was within the range of published values for similar tests. We conclude that the proposed a priori method yields acceptable simulations with only a 50% probability, a figure which may be greatly increased through a posteriori calibration. Modellers should thus exercise caution when extrapolating their models to a large sample of pedo-climatic conditions for which they have only limited information.
Resumo:
This work presents Bayes invariant quadratic unbiased estimator, for short BAIQUE. Bayesian approach is used here to estimate the covariance functions of the regionalized variables which appear in the spatial covariance structure in mixed linear model. Firstly a brief review of spatial process, variance covariance components structure and Bayesian inference is given, since this project deals with these concepts. Then the linear equations model corresponding to BAIQUE in the general case is formulated. That Bayes estimator of variance components with too many unknown parameters is complicated to be solved analytically. Hence, in order to facilitate the handling with this system, BAIQUE of spatial covariance model with two parameters is considered. Bayesian estimation arises as a solution of a linear equations system which requires the linearity of the covariance functions in the parameters. Here the availability of prior information on the parameters is assumed. This information includes apriori distribution functions which enable to find the first and the second moments matrix. The Bayesian estimation suggested here depends only on the second moment of the prior distribution. The estimation appears as a quadratic form y'Ay , where y is the vector of filtered data observations. This quadratic estimator is used to estimate the linear function of unknown variance components. The matrix A of BAIQUE plays an important role. If such a symmetrical matrix exists, then Bayes risk becomes minimal and the unbiasedness conditions are fulfilled. Therefore, the symmetry of this matrix is elaborated in this work. Through dealing with the infinite series of matrices, a representation of the matrix A is obtained which shows the symmetry of A. In this context, the largest singular value of the decomposed matrix of the infinite series is considered to deal with the convergence condition and also it is connected with Gerschgorin Discs and Poincare theorem. Then the BAIQUE model for some experimental designs is computed and compared. The comparison deals with different aspects, such as the influence of the position of the design points in a fixed interval. The designs that are considered are those with their points distributed in the interval [0, 1]. These experimental structures are compared with respect to the Bayes risk and norms of the matrices corresponding to distances, covariance structures and matrices which have to satisfy the convergence condition. Also different types of the regression functions and distance measurements are handled. The influence of scaling on the design points is studied, moreover, the influence of the covariance structure on the best design is investigated and different covariance structures are considered. Finally, BAIQUE is applied for real data. The corresponding outcomes are compared with the results of other methods for the same data. Thereby, the special BAIQUE, which estimates the general variance of the data, achieves a very close result to the classical empirical variance.
Resumo:
This paper describes a trainable system capable of tracking faces and facialsfeatures like eyes and nostrils and estimating basic mouth features such as sdegrees of openness and smile in real time. In developing this system, we have addressed the twin issues of image representation and algorithms for learning. We have used the invariance properties of image representations based on Haar wavelets to robustly capture various facial features. Similarly, unlike previous approaches this system is entirely trained using examples and does not rely on a priori (hand-crafted) models of facial features based on optical flow or facial musculature. The system works in several stages that begin with face detection, followed by localization of facial features and estimation of mouth parameters. Each of these stages is formulated as a problem in supervised learning from examples. We apply the new and robust technique of support vector machines (SVM) for classification in the stage of skin segmentation, face detection and eye detection. Estimation of mouth parameters is modeled as a regression from a sparse subset of coefficients (basis functions) of an overcomplete dictionary of Haar wavelets.
Resumo:
The proposal presented in this thesis is to provide designers of knowledge based supervisory systems of dynamic systems with a framework to facilitate their tasks avoiding interface problems among tools, data flow and management. The approach is thought to be useful to both control and process engineers in assisting their tasks. The use of AI technologies to diagnose and perform control loops and, of course, assist process supervisory tasks such as fault detection and diagnose, are in the scope of this work. Special effort has been put in integration of tools for assisting expert supervisory systems design. With this aim the experience of Computer Aided Control Systems Design (CACSD) frameworks have been analysed and used to design a Computer Aided Supervisory Systems (CASSD) framework. In this sense, some basic facilities are required to be available in this proposed framework: ·
Resumo:
Forgetting immediate physical reality and having awareness of one�s location in the simulated world is critical to enjoyment and performance in virtual environments be it an interactive 3D game such as Quake or an online virtual 3d community space such as Second Life. Answer to the question "where am I?" at two levels, whether the locus is in the immediate real world as opposed to the virtual world and whether one is aware of the spatial co-ordinates of that locus, hold the key to any virtual 3D experience. While 3D environments, especially virtual environments and their impact on spatial comprehension has been studied in disciplines such as architecture, it is difficult to determine the relative contributions of specific attributes such as screen size or stereoscopy towards spatial comprehension since most of them treat the technology as monolith (box-centered). Using a variable-centered approach put forth by Nass and Mason (1990) which breaks down the technology into its component variables and their corresponding values as its theoretical basis, this paper looks at the contributions of five variables (Stereoscopy, screen size, field of view, level of realism and level of detail) common to most virtual environments on spatial comprehension and presence. The variable centered approach can be daunting as the increase in the number of variables can exponentially increase the number of conditions and resources required. We overcome this drawback posed by adoption of such a theoretical approach by the use of a fractional factorial design for the experiment. This study has completed the first wave of data collection and starting the next phase in January 2007 and expected to complete by February 2007. Theoretical and practical implications of the study are discussed.
Resumo:
This paper employs a probit and a Markov switching model using information from the Conference Board Leading Indicator and other predictor variables to forecast the signs of future rental growth in four key U.S. commercial rent series. We find that both approaches have considerable power to predict changes in the direction of commercial rents up to two years ahead, exhibiting strong improvements over a naïve model, especially for the warehouse and apartment sectors. We find that while the Markov switching model appears to be more successful, it lags behind actual turnarounds in market outcomes whereas the probit is able to detect whether rental growth will be positive or negative several quarters ahead.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this work we define the composite function for a special class of generalized mappings and we study the invertibility for a certain class of generalized functions with real values.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Five minute-averaged values of sky clearness, direct and diffuse indices, were used to model the frequency distributions of these variables in terms of optical air mass. From more than four years of solar radiation observations it was found that variations in the frequency distributions of the three indices of optical air mass for Botucatu, Brazil, are similar to those in other places, as published in the literature. The proposed models were obtained by linear combination of normalized Beta probability functions, using the observed distributions derived from three years of data. The versatility of these functions allows modelling of all three irradiance indexes to similar levels of accuracy. A comparison with the observed distributions obtained from one year of observations indicate that the models are able to reproduce the observed frequency distributions of all three indices at the 95% confidence level.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work aims to demonstrate an application of telemetry for monitoring process variables. The authors developed the prototype of a dedicated device capable of multiplexing, encoding and transmitting real-time data signals via amplitude-shift keying modulation to remotely located device(s). The prototype development is described in details, enabling the reproduction of the proposed telemetry system for a three-phase motor as well as for other devices. Furthermore, the proposed device has an easy implementation by using of accessible components and low cost, also presenting a tutorial and educational purpose. © 2011 IEEE.
Resumo:
Using a new database of quarterly data for 21 countries of Latin America and the Caribbean for the 1990-2012 period, this document shows that the duration of GDP contractions appears to be a rather robust indicator of real volatility, and is negatively correlated with long run growth in Latin America and the Caribbean during the period. These results are consistent with different theoretical hypotheses in the literature that relate the duration of GDP contractions with economic growth. They also show that the relationship between real volatility and economic growth in the region is robust to the inclusion of external variables that control for external uncertainty and volatility.
Resumo:
Given a reproducing kernel Hilbert space (H,〈.,.〉)(H,〈.,.〉) of real-valued functions and a suitable measure μμ over the source space D⊂RD⊂R, we decompose HH as the sum of a subspace of centered functions for μμ and its orthogonal in HH. This decomposition leads to a special case of ANOVA kernels, for which the functional ANOVA representation of the best predictor can be elegantly derived, either in an interpolation or regularization framework. The proposed kernels appear to be particularly convenient for analyzing the effect of each (group of) variable(s) and computing sensitivity indices without recursivity.
Resumo:
This paper studies feature subset selection in classification using a multiobjective estimation of distribution algorithm. We consider six functions, namely area under ROC curve, sensitivity, specificity, precision, F1 measure and Brier score, for evaluation of feature subsets and as the objectives of the problem. One of the characteristics of these objective functions is the existence of noise in their values that should be appropriately handled during optimization. Our proposed algorithm consists of two major techniques which are specially designed for the feature subset selection problem. The first one is a solution ranking method based on interval values to handle the noise in the objectives of this problem. The second one is a model estimation method for learning a joint probabilistic model of objectives and variables which is used to generate new solutions and advance through the search space. To simplify model estimation, l1 regularized regression is used to select a subset of problem variables before model learning. The proposed algorithm is compared with a well-known ranking method for interval-valued objectives and a standard multiobjective genetic algorithm. Particularly, the effects of the two new techniques are experimentally investigated. The experimental results show that the proposed algorithm is able to obtain comparable or better performance on the tested datasets.