798 resultados para Frederick, of Aragon, 1451-1504.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hole 433C, a multiple re-entry hole drilled in 1862 meters of water on Suiko Seamount in the central Emperor Seamounts, penetrated 387.5 meters of lava flows overlain by 163.0 meters of sediments. The recovered volcanic rocks consist of three flow units (1-3) of alkalic basalt underlain by more than 105 flows or flow lobes (Flow Units 4-67) of tholeiitic basalt. This study reports trace-element, including rare-earth element (REE), data for 25 samples from 24 of the least altered tholeiitic flows. These data are used to evaluate the origin and evolution of tholeiitic basalts from Suiko Seamount and to evaluate changes in the mantle source between the time when Suiko Seamount formed, 64.7 ± 1.1 m.y. ago (see Dalrymple et al., 1980), and the present day. Stearns (1946), Macdonald and Katsura (1964) and Macdonald (1968) have established that chemically distinct lavas erupt during four eruptive stages of development of a Hawaiian volcano. These stages, from initial to final, are shield-building, caldera-filling, post-caldera, and post-erosional. The lavas of the shield-building stage are tholeiitic basalts, which erupt rapidly and in great volume. The shield-building stage is quickly followed by caldera collapse and by the caldera-filling stage, during which the caldera is filled by tholeiitic and alkalic lavas. During the post-caldera stage, a relatively thin veneer of alkalic basalts and associated differentiated lavas are erupted, sometimes accompanied by minor eruptions of tholeiitic lava. After a period of volcanic quiescence and erosion, lavas of the nephelinitic suite, which include both alkalic basalts and strongly SiO2-undersaturated nephelinitic basalts, may erupt from satellite vents during the post-erosional stage. Many Hawaiian volcanoes develop through all four stages; but individual volcanoes have become extinct before the cycle is complete. We interpret the tholeiitic lavas drilled on Suiko Seamount to have erupted during either the shield-building or the caldera-filling stage, and the overlying alkalic flows to have erupted during either the caldera-filling or the post-caldera stage (see Kirkpatrick et al., 1980).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lavas from several major bathymetric highs in the eastern Indian Ocean that are likely to have formed as Early to Middle Cretaceous manifestations of the Kerguelen hotspot are predominantly tholeiitic; so too are glass shards from Eocene to Paleocene volcanic ash layers on Broken Ridge, which are believed to have come from eruptions on the Ninetyeast Ridge. The early dominance of tholeiitic compositions contrasts with the more recent intraplate, alkalic volcanism of the Kerguelen Archipelago. Isotopic and incompatible-element ratios of the plateau lavas are distinct from those of Indian mid-ocean ridge basalts; their Nd, Sr, 207Pb/204Pb and 2078b/204Pb isotopic ratios overlap with but cover a much wider range than measured for more recent oceanic products of the Kerguelen hotspot (including the Ninetyeast Ridge) or, indeed, oceanic lavas from any other hotspot in the world. Samples from the Naturaliste Plateau and ODP Site 738 on the southern tip of the Kerguelen Plateau are particularly noteworthy, with e-Nd(T) = -13 to -7, (87Sr/86Sr)T=0.7090 to 0.7130 and high 207Pb/204Pb relative to 206Pb/204Pb. In addition, the low-e-Nd(T) Naturaliste Plateau samples are elevated in SiO2 (>54 wt%). In contrast to "DUPAL" oceanic islands such as the Kerguelen Archipelago, Pitcairn and Tristan da Cunha, the plateau lavas with extreme isotopic characteristics also have relative depletions in Nb and Ta (e.g., Th/Ta, La Nb > primitive mantle values); the lowest e-Nd(T) and highest Th/Ta and La Nb values occur at sites located closest to rifted continental margins. Accepting a Kerguelen plume origin for the plateau lavas, these characteristics probably reflect the shallow-level incorporation of continental lithosphere in either the head of the early Kerguelen plume or in plume-derived magmas, and suggest that the influence of such material diminished after the period of plateau construction. Contamination of asthenosphere with the type of material affecting Naturaliste Plateau and Site 738 magmatism appears unlikely to be the cause of low-206Pb/204Pb Indian mid-ocean ridge basalts. Finally, because isotopic data for the plateaus do not cluster or form converging arrays in isotope-ratio plots, they provide no evidence for either a quickly evolving, positive ?Nd, relatively high-206Pb/204Pb plume composition, or a plume source dominated by mantle with e-Nd of -3 to ~0.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Ninetyeast Ridge (NER), a north-south striking, 5,000 km long, 77 to 43 Ma chain of basaltic submarine volcanoes in the eastern Indian Ocean formed as a hotspot track created by rapid northward migration of the Indian Plate over the Kerguelen hotspot. Based on the major and trace element contents of unaltered basaltic glasses from six locations along the NER, we show that the NER was constructed by basaltic magma derived from at least three geochemically distinct mantle sources: (1) a source enriched in highly incompatible elements relative to primitive mantle like the source of the 29-24 Ma flood basalts in the Kerguelen Archipelago; (2) an incompatible element-depleted source similar to the source of Mid-Ocean Ridge Basalt (MORB) erupted along the currently active Southeast Indian Ridge (SEIR); and (3) an incompatible element-depleted source that is compositionally and mineralogically distinct from the source of SEIR MORB. Specifically, this depleted mantle source was garnet-bearing and had higher Y/Dy and Nb/Zr, but lower Zr/Sm, than the SEIR MORB source. We infer that this third source formed as a garnet-bearing residue created during a previous melting event, perhaps an initial partial melting of the mantle hotspot. Subsequently, this residue partially melted over a large pressure range, from slightly over 3 GPa to less than 1 GPa, and to a high extent (~ 30%) thereby creating relatively high SiO2 and FeO contents in some NER basalts relative to SEIR MORB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon isotopically based estimates of CO2 levels have been generated from a record of the photosynthetic fractionation of 13C (epsilon p) in a central equatorial Pacific sediment core that spans the last ~255 ka. Contents of 13C in phytoplanktonic biomass were determined by analysis of C37 alkadienones. These compounds are exclusive products of Prymnesiophyte algae which at present grow most abundantly at depths of 70-90 m in the central equatorial Pacific. A record of the isotopic compostion of dissolved CO2 was constructed from isotopic analyses of the planktonic foraminifera Neogloboquadrina dutertrei, which calcifies at 70-90 m in the same region. Values of epsilon p, derived by comparison of the organic and inorganic delta values, were transformed to yield concentrations of dissolved CO2 (c e) based on a new, site-specific calibration of the relationship between epsilon p and c e. The calibration was based on reassessment of existing epsilon p versus c e data, which support a physiologically based model in which epsilon p is inversely related to c e. Values of PCO2, the partial pressure of CO2 that would be in equilibrium with the estimated concentrations of dissolved CO2, were calculated using Henry's law and the temperature determined from the alkenone-unsaturation index UK 37. Uncertainties in these values arise mainly from uncertainties about the appropriateness (particularly over time) of the site-specific relationship between epsilon p and 1/c e. These are discussed in detail and it is concluded that the observed record of epsilon p most probably reflects significant variations in Delta pCO2, the ocean-atmosphere disequilibrium, which appears to have ranged from ~110 µatm during glacial intervals (ocean > atmosphere) to ~60 µatm during interglacials. Fluxes of CO2 to the atmosphere would thus have been significantly larger during glacial intervals. If this were characteristic of large areas of the equatorial Pacific, then greater glacial sinks for the equatorially evaded CO2 must have existed elsewhere. Statistical analysis of air-sea pCO2 differences and other parameters revealed significant (p < 0.01) inverse correlations of Delta pCO2 with sea surface temperature and with the mass accumulation rate of opal. The former suggests response to the strength of upwelling, the latter may indicate either drawdown of CO2 by siliceous phytoplankton or variation of [CO2]/[Si(OH)4] ratios in upwelling waters.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data and observation from Drifting Program Leg 121 and plate-tectonic reconstructions indicate that the Ninetyeast Ridge (Indian Ocean) was derived from the interaction of a deep-seated Dupal hotspot and a nearby spreading-ridge axis. The 5000-km-long ridge, from lat 34°S to lat 10°N, was drilled at three sites during Leg 121. About 178 m of basalt, >38 to >80 Ma, were recovered from a total penetration of ~310 m. Shipboard petrographic and geochemical studies showed that each site has distinctive characteristics. Most of the cored lavas have a tholeiitic basalt composition. Incompatible-element abundanes and ratios show systematic trends, consistent with an origin for the Ninetyeast Ridge lavas by mixing between a depleted component-Indian Ocean mid-ocean ridge basalt-and an enriched component-oceanic-island basalt similar to that observed in the youngest alkalic basalts from the Kerguelen archipelago. Preliminary shore-based trace element abundance and isotopic data are compatible with this hypothesis, although Pb isotopes indicate the involvement of another component. The long-lasting and more or less continuous activity of the Kerguelen-Heard plume (ca. 115 Ma), now located under Heard Island, south of the Southeast Indian Ridge, provides evidence that the source of the Dupal anomaly is deep seated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Through the Deep Sea Drilling Project samples of interstitial solutions of deeply buried marine sediments throughout the World Ocean have been obtained and analyzed. The studies have shown that in all but the most slowly deposited sediments pore fluids exhibit changes in composition upon burial. These changes can be grouped into a few consistent patterns that facilitate identification of the diagenetic reactions occurring in the sediments. Pelagic clays and slowly deposited (<1 cm/1000 yr) biogenic sediments are the only types that exhibit little evidence of reaction in the pore waters. In most biogenic sediments sea water undergoes considerable alteration. In sediments deposited at rates up to a few cm/1000 yr the changes chiefly involve gains of Ca(2+) and Sr(2+) and losses of Mg(2+) which balance the Ca(2+) enrichment. The Ca-Mg substitution may often reach 30 mM/kg while Sr(2+) may be enriched 15-fold over sea water. These changes reflect recrystallization of biogenic calcite and the substitution of Mg(2+) for Ca(2+) during this reaction. The Ca-Mg-carbonate formed is most likely a dolomitic phase. A related but more complex pattern is found in carbonate sediments deposited at somewhat greater rates. Ca(2+) and Sr(2+) enrichment is again characteristic, but Mg(2+) losses exceed Ca(2+) gains with the excess being balanced by SO4(post staggered 2-) losses. The data indicate that the reactions are similar to those noted above, except that the Ca(2+) released is not kept in solution but is precipitated by the HCO3(post staggered -) produced in SO4(post staggered 2-) reduction. In both these types of pore waters Na(+) is usually conservative, but K(+) depletions are frequent. In several partly consolidated sediment sections approaching igneous basement contact, very marked interstitial calcium enrichment has been found (to 5.5 g/kg). These phenomena are marked by pronounced depletion in Na(+), Si and CO2, and slight enhancement in Cl(-). The changes are attributed to exchange of Na(+) for Ca(2+) in silicate minerals forming from submarine weathering of igneous rocks such as basalts. Water is also consumed in these reactions, accounting for minor increases in total interstitial salinity. Terrigenous, organic-rich sediments deposited rapidly along continental margins also exhibit significant evidences of alteration. Microbial reactions involving organic matter lead to complete removal of SO4(post staggered 2-), strong HCO3(post staggered -) enrichment, formation of NH4(post staggered +), and methane synthesis from H2 and CO2 once SO4(post staggered 2-) is eliminated. K+ and often Na+ (slightly) are depleted in the interstitial waters. Ca(2+) depletion may occur owing to precipitation of CaCO3. In most cases interstitial Cl- remains relatively constant, but increases are noted over evaporitic strata, and decreases in interstitial Cl- are observed in some sediments adjacent to continents.