980 resultados para Food Iron
Resumo:
Monodisperse iron oxide nanocrystals with spherical and cubic morphologies, of comparable dimensions, have been prepared by the thermal decomposition of FeOOH. The lattice spacings of both forms agree with that of magnetite, Fe(3)O(4). The two, however, exhibit very different blocking temperatures. Nanocrystals of cubic morphology are superparamagnetic above 190 K while the spherical nanocrystals at a lower temperature, 142 K. The higher blocking temperatures in particles of cubic morphology are shown to be a consequence of exchange bias fields. We show that in the present iron oxide nanocrystals the exchange bias fields originate from the presence of trace amounts of wustite, FeO. A Reitveld refinement analysis of the X-ray diffraction patterns shows that nanocrystals of cubic morphology have a higher FeO content. The higher FeO content is responsible for the larger exchange bias fields that in turn lead to a higher blocking temperature for nanocrystals with cubic morphology.
Resumo:
The magnetic properties of iron-filled multi-walled carbon nanotubes dispersed in polystyrene (Fe-MWNT/PS) have been investigated as a function of Fe-MWNT concentration (0.1-15 wt%) from 300 to 10 K. Electron microscopy studies indicate that Fe nanorods (aspect ratio similar to 5) remain trapped at various lengths of MWNT and are thus, prevented from oxidation as well as aggregation. The magnetization versus applied field (M-H loop) data of 0.1 wt% of Fe-MWNTs in PS show an anomalous narrowing at low temperatures which is due to the significant contribution from shape anisotropy of Fe nanorods. The remanence shows a threshold feature at 1 wt%. The enhanced coercivity shows a maximum at 1 wt% due to the dominant dipolar interactions among Fe nanorods. Also the squareness ratio shows a maximum at 1 wt%.
Resumo:
There is a large interest in biofuels in India as a substitute to petroleum-based fuels, with a purpose of enhancing energy security and promoting rural development. India has announced an ambitious target of substituting 20% of fossil fuel consumption by biodiesel and bioethanol by 2017. India has announced a national biofuel policy and launched a large program to promote biofuel production, particularly on wastelands: its implications need to be studied intensively considering the fact that India is a large developing country with high population density and large rural population depending upon land for their livelihood. Another factor is that Indian economy is experiencing high growth rate, which may lead to enhanced demand for food, livestock products, timber, paper, etc., with implications for land use. Studies have shown that area under agriculture and forest has nearly stabilized over the past 2-3 decades. This paper presents an assessment of the implications of projected large-scale biofuel production on land available for food production, water, biodiversity, rural development and GHG emissions. The assessment will be largely focused on first generation biofuel crops, since the Indian program is currently dominated by these crops. Technological and policy options required for promoting sustainable biofuel production will be discussed. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Solid oxide galvanic cells using CaO-ZrO2 and CaO-ZrO2 in combination with YO1.5-ThO2 as electrolyte were used to determine the free energy of formation of hercynite from 750–1600°C. The formation reaction is 2Fe(s,1) + O2(g) + Al2O3(α) = 2FeO.Al2O3(s)for which ΔG° = − 139,790 + 32.83T (±300) cals. (750–1536°C) ΔG° = − 146,390 + 36.48T (±300) cals. (1536–1700°C)These measurements can be used to resolve the discrepancies that exist in published thermochemical data, and provide an accurate oxygen potential standard for calibrating and assessing the performance of oxygen probes under steelmaking conditions.
The electronic structure of the alloying element and the stability of the gamma phase in iron alloys
Resumo:
An experimental characterization of three-phase equilibria in Fe--V--O and Fe--Nb--O systems at 1823, 1873 and 1923K has been carried out using a solid state cell and by analysis of quenched samples. The oxygen potentials corresponding to these three-phase equilibria were monitored by a solid state cell incorporating Y sub 2 O sub 3 doped ThO sub 2 with Cr + Cr sub 2 O sub 3 as reference electrode. Similar measurements were carried out for Fe--Nb--O alloys in equilibrium with a mixture of FeNb sub 2 O sub 6 and NbO sub 2 . These measurements permit evaluation of interaction parameters (e exp V sub O = --6590/T + 2.892 and e exp Nb sub O = --4066/T + 1.502) and activity coefficients of vanadiun and niobium in dilute solution (ln gamma exp O sub V = --35 320/T + 12.68 and ln gamma sub Nb exp O = --12 386/T + 4.34) in liquid iron. The results obtained in this study resolve a number of discrepancies in thermodynamic data reported in the literature, especially regarding the activity coefficients of V and Nb and the stability ranges for V sub 2 O sub 3 and VO sub 1+x . 18 ref.--AA
Resumo:
This paper reports, the Laser Induced Breakdown Spectroscopy (LIBS) studies and structure elucidation of compounds isolated from the fruit extract of Moringa oleifera and also deals with their possible effects on some bacterial strains viz. Staphylococcus aureus, Klebsiella pneumonia, Escherichia coli and Pseudomonas aeruginosa. The extract was found to be active against all four microorganisms used. Extent of inhibitory effect of extract was assessed at different concentrations of 25, 50, 75 mg/ml by measuring diameter of inhibition zone (DIZ). Our results clearly showed that the 75 mg/ml concentration of the extract had 14, 12 and 18 mm of the DIZ against Staphylococcus aureus, Klebsiella pneumonia and Pseudomonas aeruginosa and 14 mm with 50 mg/ml concentration against Escherichia coli. The results were compared with the standard antibiotic `ampicillin' of 1 mg/ml concentration. LIBS was recorded with high power pulsed laser beam from Nd: YAG Laser (Continuum Surelite III-10), focused on the surface of the material, which was in liquid form, to generate plasma on the surface of the sample. LIBS data clearly demonstrate the presence of trace elements, magnesium and iron, in high concentration in the extract. Whereas, from the phytochemical profile reveals the presence of two new compounds, S-ethyl-N-{4-[(alpha-L-rhamnosyloxy) benzyl]} thiocarbamate and 2-acetoxy {4-[(2',3',4'-tri-O-acetyl-alpha-L-rhamnosyloxy) benzyl]} acetonitrile as the major constituents. This study is the first report on synergetic effect of the phytoconstituents and certain set of elements present in their defined role in bacterial management against different bacterial strains.
Resumo:
A bacterium Bacillus polymyxa was found to be capable of selective removal of calcium and iron from bauxite. The bioleached residue was found to be enriched in its alumina content with insignificant amounts of iron and calcium as impurities. The developed bio- process was found to be capable of producing a bauxite product which meets the specifica- tions as a raw material for the manufacture of alumina based ceramics and refractories. The role of bacterial cells and metabolic products in the selective dissolution of calcium (present as calcite) and iron (present as hematite and goethite) from bauxite was assessed and possi- ble mechanisms illustrated. The effect of different parameters such as sucrose concentra- tion, pH, pulp density and time on selective biodissolution was studied. It was observed that periodic decantation and replenishment of the leach medium was beneficial in improving the dissolution kinetics. Calcium removal involves chelation with bacterial exopolysaccha- tides and acidolysis by organic acid generation. Hematite could be solubilized through a reductive dissolution mechanism.
Resumo:
Lithium iron phosphate (LiFePO4) electronically wired by multi-walled carbon nanotubes (MWCNTs) and in-situ transformed graphitic carbon for lithium-ion batteries are discussed here. Presence of MWCNTs up to a maximum of 0.5% in porous LiFePO4 (abbreviated as LFP-CNT) resulted in remarkable reversible cyclability and rate capability compared to LFP coated with highly disordered carbon (abbreviated as LFP-C). In the current range (30-1500) mAg(-1), specific capacity of LFP-CNT (approximate to 150-50 mAhg(-1)) is observed to be always higher compared to LFP-C (approximate to 120-0 mAhg(-1)). At higher currents of 250-1500 mAg(-1) LFP-C performed poorly compared to LFP-CNT. LFP-C showed considerable decay in capacity with increase in cycle number at intermediate high currents (approximate to 250 mAg(-1)) whereas at very high currents (approximate to 750 mAg(-1)) it is nearly zero. The LFP-CNT showed no such detrimental behavior in battery performance. The exemplary performance of the LFP-CNT is attributed to combination of both enhanced LFP structural stability, as revealed by Raman spectra and formation of an efficient percolative network of carbon nanotubes which during the course of galvanostatic cycling gets gradually transformed to graphitic carbon. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.015204jes] All rights reserved.