969 resultados para Flow Pattern
Resumo:
The flow, heat and mass transfer on the unsteady laminar incompressible boundary layer in micropolar fluid at the stagnation point of a 2-dimensional and an axisymmetric body have been studied when the free stream velocity and the wall temperature vary arbitrarily with time. The partial defferential equations governing the flow have been solved numerically using a quasilinear finite-difference scheme. The skin friction, microrotation gradient and heat transfer parameters are found to be strongly dependent on the coupling parameter, mass transfer and time, whereas the effect of the microrotation parameter on the skin friction and heat transfer is rather weak, but microrotation gradient is strongly affected by it. The Prandtl number and the variation of the wall temperature with time affect the heat-transfer very significantly but the skin friction and micrortation gradient are unaffected by them.
Resumo:
An equation governing the excess pressure has been derived, for an axially tethered and stenosed elastic tube filled with viscous liquid, by introducing the elasticity of the tube through pressure-area relation. This equation is solved numerically for large Womersley parameter and the results are presented for different types of pressure-radius relations and geometries by prescribing an outgoing wave suffering attenuation at some axial point of the tube. For a locally constricted tube it is observed that the pressure oscillates more and generates sound on the down stream side of the constriction.
Resumo:
The effect of massive blowing rates on the steady laminar compressible boundary-layer flow with variable gas properties at a 3-dim. stagnation point (which includes both nodal and saddle points of attachment) has been studied. The equations governing the flow have been solved numerically using an implicit finite-difference scheme in combination with the quasilinearization technique for nodal points of attachment but employing a parametric differentiation technique instead of quasilinearization for saddle points of attachment. It is found that the effect of massive blowing rates is to move the viscous layer away from the surface. The effect of the variation of the density- viscosity product across the boundary layer is found to be negligible for massive blowing rates but significant for moderate blowing rates. The velocity profiles in the transverse direction for saddle points of attachment in the presence of massive blowing show both the reverse flow as well as velocity overshoot.
Resumo:
Abstract-The success of automatic speaker recognition in laboratory environments suggests applications in forensic science for establishing the Identity of individuals on the basis of features extracted from speech. A theoretical model for such a verification scheme for continuous normaliy distributed featureIss developed. The three cases of using a) single feature, b)multipliendependent measurements of a single feature, and c)multpleindependent features are explored.The number iofndependent features needed for areliable personal identification is computed based on the theoretcal model and an expklatory study of some speech featues.
Resumo:
A simple sequential thinning algorithm for peeling off pixels along contours is described. An adaptive algorithm obtained by incorporating shape adaptivity into this sequential process is also given. The distortions in the skeleton at the right-angle and acute-angle corners are minimized in the adaptive algorithm. The asymmetry of the skeleton, which is a characteristic of sequential algorithm, and is due to the presence of T-corners in some of the even-thickness pattern is eliminated. The performance (in terms of time requirements and shape preservation) is compared with that of a modern thinning algorithm.
Resumo:
The unsteady laminar incompressible boundary-layer attachment-line flow on a flat plate with attached cylinder with heat and mass transfer has been studied when the free stream velocity, mass transfer and surface wall temperature vary arbitrarily with time. The governing partial differential equations with three independent variables have been solved numerically using an implicit finite-difference scheme. The heat transfer was found to be strongly dependent on the Prandtl number, variation of wall temperature with time and dissipation parameter (for large times). However, the free stream velocity distribution and mass transfer affect both the heat transfer and skin friction.
Resumo:
Experimentally measured average velocities through plateau borders of stationary cellular foam, when compared with those calculated with the assumption of rigid Plateau Border walls, show that the assumption of rigid walls severely underestimates the velocities. An analysis of the situation wherein plateau border walls have velocities, as decided by the surface viscosity of the system, is presented here. The plateau border is idealized as a pipe of equilateral triangular cross-section with vertices of the triangle having zero velocity. The pertinent form of Navier-Stoke's equations with inhomogeneous boundary conditions and its solution through a procedure of successive approximations is presented in dimensionless form. The solution reduces to the known solution of slow steady flow through a triangular pipe, when surface viscosity is infinite. Results indicate that the assumption of rigid plateau border walls is valid only when value of the inverse of dimensionless surface viscosity is less than 0.044. Beyond that the assumption severely underestimates the flow and the effect of nonrigidity of the wall must be considered.
Resumo:
In closed-die forging the flash geometry should be such as to ensure that the cavity is completely filled just as the two dies come into contact at the parting plane. If metal is caused to extrude through the flash gap as the dies approach the point of contact — a practice generally resorted to as a means of ensuring complete filling — dies are unnecessarily stressed in a high-stress regime (as the flash is quite thin and possibly cooled by then), which reduces the die life and unnecessarily increases the energy requirement of the operation. It is therefore necessary to carefully determine the dimensions of the flash land and flash thickness — the two parameters, apart from friction at the land, which control the lateral flow. The dimensions should be such that the flow into the longitudinal cavity is controlled throughout the operation, ensuring complete filling just as the dies touch at the parting plane. The design of the flash must be related to the shape and size of the forging cavity as the control of flow has to be exercised throughout the operation: it is possible to do this if the mechanics of how the lateral extrusion into the flash takes place is understood for specific cavity shapes and sizes. The work reported here is part of an ongoing programme investigating flow in closed-die forging. A simple closed shape (no longitudinal flow) which may correspond to the last stages of a real forging operation is analysed using the stress equilibrium approach. Metal from the cavity (flange) flows into the flash by shearing in the cavity in one of the three modes considered here: for a given cavity the mode with the least energy requirement is assumed to be the most realistic. On this basis a map has been developed which, given the depth and width of the cavity as well as the flash thickness, will tell the designer of the most likely mode (of the three modes considered) in which metal in the cavity will shear and then flow into the flash gap. The results of limited set of experiments, reported herein, validate this method of selecting the optimum model of flow into the flash gap.
Resumo:
A fully developed pulsatile flow in a circular rigid tube is analysed by a microcontinuum approach. Solutions for radial variation of axial velocity and cell rotational velocity across the tube are obtained using the momentum integral method. Simplified forms of the solutions are presented for the relevant physiological data. Marked deviations in the results are observed when compared to a Newtonian fluid model. It is interesting to see that there is sufficient reduction in the mass flow rate, phase lag and friction due to the micropolar character of the fluid.
Resumo:
The effect of a magnetic field on the flow and oxygenation of an incompressible Newtonian conducting fluid in channels with irregular boundaries has been investigated. The geometric parameter δ, which is a ratio of the mean half width of the channel d to the characteristic length λ along the channel over which the significant changes in the flow quantities occur, has been used for perturbing the governing equations. Closed form solutions of the various order equations are presented for the stream function. The equations for oxygen partial pressure remain nonlinear even after perturbation, therefore a numerical solution is presented. The expressions for shear stress at a wall and pressure distributions are derived. Here the separation in the flow occurs at a higher Reynolds number than the corresponding non-magnetic case. It is found that the magnetic field has an effect on local oxygen concentration but has a little effect on the saturation length.
Resumo:
This paper deals with the optimal load flow problem in a fixed-head hydrothermal electric power system. Equality constraints on the volume of water available for active power generation at the hydro plants as well as inequality constraints on the reactive power generation at the voltage controlled buses are imposed. Conditions for optimal load flow are derived and a successive approximation algorithm for solving the optimal generation schedule is developed. Computer implementation of the algorithm is discussed, and the results obtained from the computer solution of test systems are presented.
Time dependent rotational flow of a viscous fluid over an infinite porous disk with a magnetic field
Resumo:
Both the semi-similar and self-similar flows due to a viscous fluid rotating with time dependent angular velocity over a porous disk of large radius at rest with or without a magnetic field are investigated. For the self-similar case the resulting equations for the suction and no mass transfer cases are solved numerically by quasilinearization method whereas for the semi-similar case and injection in the self-similar case an implicit finite difference method with Newton's linearization is employed. For rapid deceleration of fluid and for moderate suction in the case of self-similar flow there exists a layer of fluid, close to the disk surface where the sense of rotation is opposite to that of the fluid rotating far away. The velocity profiles in the absence of magnetic field are found to be oscillatory except for suction. For the accelerating freestream, (semi-similar flow) the effect of time is to reduce the amplitude of the oscillations of the velocity components. On the other hand the effect of time for the oscillating case is just the opposite.
Resumo:
Heat transfer in a MHD flow between two infinite eccentric disks rotating with different speeds is considered when the plates are maintained at different temperatures. The results for the corresponding nonmagnetic case presented wrongly by Banerjee and Borkakati [7] are corrected. It is observed that the eccentric rotation reduces the heat transfer on the disks.
Resumo:
Five species of commercial prawns Penaeus plebejus, P. merguiensis, P. semisulcatus/P. esculentus and M. bennettae, were obtained from South-East and North Queensland, chilled soon after capture and then stored either whole or deheaded on ice and ice slurry, until spoilage. Total bacterial counts, total volatile nitrogen, K-values and total demerit scores were assessed at regular intervals. Their shelf lives ranged from 10-17 days on ice and >20 days on ice slurry. Initial bacterial flora on prawns from shallower waters (4-15m) were dominated by Gram-positives and had lag periods around 7 days, whereas prawns from deeper waters (100m) were dominant in Pseudomonas spp. with no lag periods in bacterial growth. The dominant spoiler in ice was mainly Pseudomonas fragi whereas the main spoiler in ice slurry was Shewanella putrefaciens. Bacterial interactions seem to play a major role in the patterns of spoilage in relation to capture environment and pattern of storage
Resumo:
An adaptive learning scheme, based on a fuzzy approximation to the gradient descent method for training a pattern classifier using unlabeled samples, is described. The objective function defined for the fuzzy ISODATA clustering procedure is used as the loss function for computing the gradient. Learning is based on simultaneous fuzzy decisionmaking and estimation. It uses conditional fuzzy measures on unlabeled samples. An exponential membership function is assumed for each class, and the parameters constituting these membership functions are estimated, using the gradient, in a recursive fashion. The induced possibility of occurrence of each class is useful for estimation and is computed using 1) the membership of the new sample in that class and 2) the previously computed average possibility of occurrence of the same class. An inductive entropy measure is defined in terms of induced possibility distribution to measure the extent of learning. The method is illustrated with relevant examples.