890 resultados para Finite-Element Analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This investigation is the final phase of a three part study whose overall objectives were to determine if a restraining force is required to prevent inlet uplift failures in corrugated metal pipe (CMP) installations, and to develop a procedure for calculating the required force when restraint is required. In the initial phase of the study (HR-306), the extent of the uplift problem in Iowa was determined and the forces acting on a CMP were quantified. In the second phase of the study (HR- 332), laboratory and field tests were conducted. Laboratory tests measured the longitudinal stiffness ofCMP and a full scale field test on a 3.05 m (10 ft) diameter CMP with 0.612 m (2 ft) of cover determined the soil-structure interaction in response to uplift forces. Reported herein are the tasks that were completed in the final phase of the study. In this phase, a buried 2.44 m (8 ft) CMP was tested with and without end-restraint and with various configurations of soil at the inlet end of the pipe. A total of four different soil configurations were tested; in all tests the soil cover was constant at 0.61 m (2 ft). Data from these tests were used to verify the finite element analysis model (FEA) that was developed in this phase of the research. Both experiments and analyses indicate that the primary soil contribution to uplift resistance occurs in the foreslope and that depth of soil cover does not affect the required tiedown force. Using the FEA, design charts were developed with which engineers can determine for a given situation if restraint force is required to prevent an uplift failure. If an engineer determines restraint is needed, the design charts provide the magnitude of the required force. The design charts are applicable to six gages of CMP for four flow conditions and two types of soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To provide insight into subgrade non-uniformity and its effects on pavement performance, this study investigated the influence of non-uniform subgrade support on pavement responses (stress and deflection) that affect pavement performance. Several reconstructed PCC pavement projects in Iowa were studied to document and evaluate the influence of subgrade/subbase non-uniformity on pavement performance. In situ field tests were performed at 12 sites to determine the subgrade/subbase engineering properties and develop a database of engineering parameter values for statistical and numerical analysis. Results of stiffness, moisture and density, strength, and soil classification were used to determine the spatial variability of a given property. Natural subgrade soils, fly ash-stabilized subgrade, reclaimed hydrated fly ash subbase, and granular subbase were studied. The influence of the spatial variability of subgrade/subbase on pavement performance was then evaluated by modeling the elastic properties of the pavement and subgrade using the ISLAB2000 finite element analysis program. A major conclusion from this study is that non-uniform subgrade/subbase stiffness increases localized deflections and causes principal stress concentrations in the pavement, which can lead to fatigue cracking and other types of pavement distresses. Field data show that hydrated fly ash, self-cementing fly ash-stabilized subgrade, and granular subbases exhibit lower variability than natural subgrade soils. Pavement life should be increased through the use of more uniform subgrade support. Subgrade/subbase construction in the future should consider uniformity as a key to long-term pavement performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large Dynamic Message Signs (DMSs) have been increasingly used on freeways, expressways and major arterials to better manage the traffic flow by providing accurate and timely information to drivers. Overhead truss structures are typically employed to support those DMSs allowing them to provide wider display to more lanes. In recent years, there is increasing evidence that the truss structures supporting these large and heavy signs are subjected to much more complex loadings than are typically accounted for in the codified design procedures. Consequently, some of these structures have required frequent inspections, retrofitting, and even premature replacement. Two manufacturing processes are primarily utilized on truss structures - welding and bolting. Recently, cracks at welding toes were reported for the structures employed in some states. Extremely large loads (e.g., due to high winds) could cause brittle fractures, and cyclic vibration (e.g., due to diurnal variation in temperature or due to oscillations in the wind force induced by vortex shedding behind the DMS) may lead to fatigue damage, as these are two major failures for the metallic material. Wind and strain resulting from temperature changes are the main loads that affect the structures during their lifetime. The American Association of State Highway and Transportation Officials (AASHTO) Specification defines the limit loads in dead load, wind load, ice load, and fatigue design for natural wind gust and truck-induced gust. The objectives of this study are to investigate wind and thermal effects in the bridge type overhead DMS truss structures and improve the current design specifications (e.g., for thermal design). In order to accomplish the objective, it is necessary to study structural behavior and detailed strain-stress of the truss structures caused by wind load on the DMS cabinet and thermal load on the truss supporting the DMS cabinet. The study is divided into two parts. The Computational Fluid Dynamics (CFD) component and part of the structural analysis component of the study were conducted at the University of Iowa while the field study and related structural analysis computations were conducted at the Iowa State University. The CFD simulations were used to determine the air-induced forces (wind loads) on the DMS cabinets and the finite element analysis was used to determine the response of the supporting trusses to these pressure forces. The field observation portion consisted of short-term monitoring of several DMS Cabinet/Trusses and long-term monitoring of one DMS Cabinet/Truss. The short-term monitoring was a single (or two) day event in which several message sign panel/trusses were tested. The long-term monitoring field study extended over several months. Analysis of the data focused on trying to identify important behaviors under both ambient and truck induced winds and the effect of daily temperature changes. Results of the CFD investigation, field experiments and structural analysis of the wind induced forces on the DMS cabinets and their effect on the supporting trusses showed that the passage of trucks cannot be responsible for the problems observed to develop at trusses supporting DMS cabinets. Rather the data pointed toward the important effect of the thermal load induced by cyclic (diurnal) variations of the temperature. Thermal influence is not discussed in the specification, either in limit load or fatigue design. Although the frequency of the thermal load is low, results showed that when temperature range is large the restress range would be significant to the structure, especially near welding areas where stress concentrations may occur. Moreover stress amplitude and range are the primary parameters for brittle fracture and fatigue life estimation. Long-term field monitoring of one of the overhead truss structures in Iowa was used as the research baseline to estimate the effects of diurnal temperature changes to fatigue damage. The evaluation of the collected data is an important approach for understanding the structural behavior and for the advancement of future code provisions. Finite element modeling was developed to estimate the strain and stress magnitudes, which were compared with the field monitoring data. Fatigue life of the truss structures was also estimated based on AASHTO specifications and the numerical modeling. The main conclusion of the study is that thermal induced fatigue damage of the truss structures supporting DMS cabinets is likely a significant contributing cause for the cracks observed to develop at such structures. Other probable causes for fatigue damage not investigated in this study are the cyclic oscillations of the total wind load associated with the vortex shedding behind the DMS cabinet at high wind conditions and fabrication tolerances and induced stresses due to fitting of tube to tube connections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: In the milder form of primary hyperparathyroidism (PHPT), cancellous bone, represented by areal bone mineral density at the lumbar spine by dual-energy x-ray absorptiometry (DXA), is preserved. This finding is in contrast to high-resolution peripheral quantitative computed tomography (HRpQCT) results of abnormal trabecular microstructure and epidemiological evidence for increased overall fracture risk in PHPT. Because DXA does not directly measure trabecular bone and HRpQCT is not widely available, we used trabecular bone score (TBS), a novel gray-level textural analysis applied to spine DXA images, to estimate indirectly trabecular microarchitecture. Objective: The purpose of this study was to assess TBS from spine DXA images in relation to HRpQCT indices and bone stiffness in radius and tibia in PHPT. Design and Setting: This was a cross-sectional study conducted in a referral center. Patients: Participants were 22 postmenopausal women with PHPT. Main Outcome Measures: Outcomes measured were areal bone mineral density by DXA, TBS indices derived from DXA images, HRpQCT standard measures, and bone stiffness assessed by finite element analysis at distal radius and tibia. Results: TBS in PHPT was low at 1.24, representing abnormal trabecular microstructure (normal ≥1.35). TBS was correlated with whole bone stiffness and all HRpQCT indices, except for trabecular thickness and trabecular stiffness at the radius. At the tibia, correlations were observed between TBS and volumetric densities, cortical thickness, trabecular bone volume, and whole bone stiffness. TBS correlated with all indices of trabecular microarchitecture, except trabecular thickness, after adjustment for body weight. Conclusion: TBS, a measurement technology readily available by DXA, shows promise in the clinical assessment of trabecular microstructure in PHPT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diplomityössä tutustutaan napakäämittyihin murtovakokestomagneettitahtikoneisiin sekä syvennytään niiden suunnitteluun analyyttisen laskennanavulla. Analyyttisen laskennan haasteena on perinteisesti käytettyjen kestomagneettitahtikoneiden laskentayhtälöiden sovittaminen murtovakokäämityille kestomagneettitahtikoneille. Työn lopussa analyyttisen laskennan tuloksia verrataan kenttälaskentaohjelmalla saatuihin tuloksiin. Tärkeimmät analyyttiset yhtälöt sekä laskentamallin rakenne on esitetty työssä.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The building industry has a particular interest in using clinching as a joining method for frame constructions of light-frame housing. Normally many clinch joints are required in joining of frames.In order to maximise the strength of the complete assembly, each clinch joint must be as sound as possible. Experimental testing is the main means of optimising a particular clinch joint. This includes shear strength testing and visual observation of joint cross-sections. The manufacturers of clinching equipment normally perform such experimental trials. Finite element analysis can also be used to optimise the tool geometry and the process parameter, X, which represents the thickness of the base of the joint. However, such procedures require dedicated software, a skilled operator, and test specimens in order to verify the finite element model. In addition, when using current technology several hours' computing time may be necessary. The objective of the study was to develop a simple calculation procedure for rapidly establishing an optimum value for the parameter X for a given tool combination. It should be possible to use the procedure on a daily basis, without stringent demands on the skill of the operator or the equipment. It is also desirable that the procedure would significantly decrease thenumber of shear strength tests required for verification. The experimental workinvolved tests in order to obtain an understanding of the behaviour of the sheets during clinching. The most notable observation concerned the stage of the process in which the upper sheet was initially bent, after which the deformation mechanism changed to shearing and elongation. The amount of deformation was measured relative to the original location of the upper sheet, and characterised as the C-measure. By understanding in detail the behaviour of the upper sheet, it waspossible to estimate a bending line function for the surface of the upper sheet. A procedure was developed, which makes it possible to estimate the process parameter X for each tool combination with a fixed die. The procedure is based on equating the volume of material on the punch side with the volume of the die. Detailed information concerning the behaviour of material on the punch side is required, assuming that the volume of die does not change during the process. The procedure was applied to shear strength testing of a sample material. The sample material was continuously hot-dip zinc-coated high-strength constructional steel,with a nominal thickness of 1.0 mm. The minimum Rp0.2 proof stress was 637 N/mm2. Such material has not yet been used extensively in light-frame housing, and little has been published on clinching of the material. The performance of the material is therefore of particular interest. Companies that use clinching on a daily basis stand to gain the greatest benefit from the procedure. By understanding the behaviour of sheets in different cases, it is possible to use data at an early stage for adjusting and optimising the process. In particular, the functionality of common tools can be increased since it is possible to characterise the complete range of existing tools. The study increases and broadens the amount ofbasic information concerning the clinching process. New approaches and points of view are presented and used for generating new knowledge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In distributed energy production, permanent magnet synchronous generators (PMSG) are often connected to the grid via frequency converters, such as voltage source line converters. The price of the converter may constitute a large part of the costs of a generating set. Some of the permanent magnet synchronous generators with converters and traditional separately excited synchronous generators couldbe replaced by direct-on-line (DOL) non-controlled PMSGs. Small directly networkconnected generators are likely to have large markets in the area of distributed electric energy generation. Typical prime movers could be windmills, watermills and internal combustion engines. DOL PMSGs could also be applied in island networks, such as ships and oil platforms. Also various back-up power generating systems could be carried out with DOL PMSGs. The benefits would be a lower priceof the generating set and the robustness and easy use of the system. The performance of DOL PMSGs is analyzed. The electricity distribution companies have regulations that constrain the design of the generators being connected to the grid. The general guidelines and recommendations are applied in the analysis. By analyzing the results produced by the simulation model for the permanent magnet machine, the guidelines for efficient damper winding parameters for DOL PMSGs are presented. The simulation model is used to simulate grid connections and load transients. The damper winding parameters are calculated by the finite element method (FEM) and determined from experimental measurements. Three-dimensional finite element analysis (3D FEA) is carried out. The results from the simulation model and 3D FEA are compared with practical measurements from two prototype axial flux permanent magnet generators provided with damper windings. The dimensioning of the damper winding parameters is case specific. The damper winding should be dimensioned based on the moment of inertia of the generating set. It is shown that the damper winding has optimal values to reach synchronous operation in the shortest period of time after transient operation. With optimal dimensioning, interferenceon the grid is minimized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study compares different rotor structures of permanent magnet motors with fractional slot windings. The surface mounted magnet and the embedded magnet rotor structures are studied. This thesis analyses the characteristics of a concentrated two-layer winding, each coil of which is wound around one tooth and which has a number of slots per pole and per phase less than one (q < 1). Compared to the integer slot winding, the fractional winding (q < 1) has shorter end windings and this, thereby, makes space as well as manufacturing cost saving possible. Several possible ways of winding a fractional slot machine with slots per pole and per phase lessthan one are examined. The winding factor and the winding harmonic components are calculated. The benefits attainable from a machine with concentrated windingsare considered. Rotor structures with surface magnets, radially embedded magnets and embedded magnets in V-position are discussed. The finite element method isused to solve the main values of the motors. The waveform of the induced electro motive force, the no-load and rated load torque ripple as well as the dynamic behavior of the current driven and voltage driven motor are solved. The results obtained from different finite element analyses are given. A simple analytic method to calculate fractional slot machines is introduced and the values are compared to the values obtained with the finite element analysis. Several different fractional slot machines are first designed by using the simple analytical methodand then computed by using the finite element method. All the motors are of thesame 225-frame size, and have an approximately same amount of magnet material, a same rated torque demand and a 400 - 420 rpm speed. An analysis of the computation results gives new information on the character of fractional slot machines.A fractional slot prototype machine with number 0.4 for the slots per pole and per phase, 45 kW output power and 420 rpm speed is constructed to verify the calculations. The measurement and the finite element method results are found to beequal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is commonly observed that complex fabricated structures subject tofatigue loading fail at the welded joints. Some problems can be corrected by proper detail design but fatigue performance can also be improved using post-weld improvement methods. In general, improvement methods can be divided into two main groups: weld geometry modification methods and residual stress modification methods. The former remove weld toe defects and/or reduce the stress concentrationwhile the latter introduce compressive stress fields in the area where fatigue cracks are likely to initiate. Ultrasonic impact treatment (UIT) is a novel post-weld treatment method that influences both the residual stress distribution andimproves the local geometry of the weld. The structural fatigue strength of non-load carrying attachments in the as-welded condition has been experimentally compared to the structural fatigue strength of ultrasonic impact treated welds. Longitudinal attachment specimens made of two thicknesses of steel S355 J0 have been tested for determining the efficiency of ultrasonic impacttreatment. Treated welds were found to have about 50% greater structural fatigue strength, when the slope of the S-N-curve is three. High mean stress fatigue testing based on the Ohta-method decreased the degree of weld improvement only 19%. This indicated that the method could be also applied for large fabricated structures operating under high reactive residual stresses equilibrated within the volume of the structure. The thickness of specimens has no significant effect tothe structural fatigue strength. The fatigue class difference between 5 mm and 8 mm specimen was only 8%. It was hypothesized that the UIT method added a significant crack initiation period to the total fatigue life of the welded joints. Crack initiation life was estimated by a local strain approach. Material parameters were defined using a modified Uniform Material Law developed in Germany. Finite element analysis and X-ray diffraction were used to define, respectively, the stress concentration and mean stress. The theoretical fatigue life was found to have good accuracy comparing to experimental fatigue tests.The predictive behaviour of the local strain approach combined with the uniformmaterial law was excellent for the joint types and conditions studied in this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The future of high technology welded constructions will be characterised by higher strength materials and improved weld quality with respect to fatigue resistance. The expected implementation of high quality high strength steel welds will require that more attention be given to the issues of crack initiation and mechanical mismatching. Experiments and finite element analyses were performed within the framework of continuum damage mechanics to investigate the effect of mismatching of welded joints on void nucleation and coalescence during monotonic loading. It was found that the damage of undermatched joints mainly occurred in the sandwich layer and the damageresistance of the joints decreases with the decrease of the sandwich layer width. The damage of over-matched joints mainly occurred in the base metal adjacent to the sandwich layer and the damage resistance of the joints increases with thedecrease of the sandwich layer width. The mechanisms of the initiation of the micro voids/cracks were found to be cracking of the inclusions or the embrittled second phase, and the debonding of the inclusions from the matrix. Experimental fatigue crack growth rate testing showed that the fatigue life of under-matched central crack panel specimens is longer than that of over-matched and even-matched specimens. Further investigation by the elastic-plastic finite element analysis indicated that fatigue crack closure, which originated from the inhomogeneousyielding adjacent to the crack tip, played an important role in the fatigue crack propagation. The applicability of the J integral concept to the mismatched specimens with crack extension under cyclic loading was assessed. The concept of fatigue class used by the International Institute of Welding was introduced in the parametric numerical analysis of several welded joints. The effect of weld geometry and load condition on fatigue strength of ferrite-pearlite steel joints was systematically evaluated based on linear elastic fracture mechanics. Joint types included lap joints, angle joints and butt joints. Various combinations of the tensile and bending loads were considered during the evaluation with the emphasis focused on the existence of both root and toe cracks. For a lap joint with asmall lack-of-penetration, a reasonably large weld leg and smaller flank angle were recommended for engineering practice in order to achieve higher fatigue strength. It was found that the fatigue strength of the angle joint depended strongly on the location and orientation of the preexisting crack-like welding defects, even if the joint was welded with full penetration. It is commonly believed that the double sided butt welds can have significantly higher fatigue strength than that of a single sided welds, but fatigue crack initiation and propagation can originate from the weld root if the welding procedure results in a partial penetration. It is clearly shown that the fatigue strength of the butt joint could be improved remarkably by ensuring full penetration. Nevertheless, increasing the fatigue strength of a butt joint by increasing the size of the weld is an uneconomical alternative.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Työssä on tutkittu kylmämuovattujen nelikulmaisten putkipalkkien K-liitosten mallinnusta epälineaarisella elementtimenetelmällä. Työn tärkeimpänä tavoitteena on ollut kehittää putkipalkin osien materiaalimalleja siten, että liitosten kestävyyttä voidaan tutkia laboratoriokokeiden ohella luotettavasti myös elementtimenetelmällä. Toisena tavoitteena on ollut tutkia, voidaanko putkipalkkien liitosten mitoitusohjeita turvallisesti soveltaa kylmämuovatuille putkipalkeille, joissa valmistusprosessi aiheuttaa muutoksia materiaaliominaisuuksiin, erityisesti muodonmuutoskykyyn. Työssä tehtyjen laboratoriokokeiden ja elementtianalyysien perusteella elementti-menetelmä on käyttökelpoinen työkalu putkipalkkiliitosten staattista kestävyyttä määritettäessä, kun materiaalimallit on määritetty oikein. Erityisesti liitoksen käyttö-rajatilan mukaisen kestävyyden laskennassa elementtimenetelmällä saadaan hyvin laboratoriokokeita vastaavia tuloksia. Tehdyt laboratoriokokeet osoittavat myös, että Eurocode 3:n mukaisia putkipalkkien liitosten mitoitusohjeita voi turvallisesti käyttää kylmämuovatuille putkipalkeille.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Työssä on tutkittu elementtimenetelmän avulla kylmämuovattujen nelikulmaisten putkipalkkien materiaalimallin kehittämistä ja putkipalkkien X-liitosten jäykkyyden ja äärikestävyyden määrittämistä. Työn tavoitteena on tutkia kylmämuovauksen vaikutuksia putkipalkkiprofiilin materiaaliominaisuuksiin materiaalikokeiden ja elementtianalyysien avulla sekä kehittää putkipalkille anisotrooppista materiaalimallia. Työssä määritettyjä materiaalimalleja on sovellettu X-liitosten elementtimalleihin, joiden käyttäytymistä on verrattu äärikestävyyskokeiden tuloksiin. Tutkimuksen perusteella Eurocode 3:n mitoitusohjeita voidaan turvallisesti soveltaa kylmämuovattujen putkipalkkien X-liitosten laskennassa. Työssä tehtyjen materiaalikokeiden ja elementtianalyysien perusteella materiaalin anisotrooppisuuden vaikutus liitoksen kestävyyteen on vähäistä, ja putkipalkin pituussuuntaista materiaalimallia voidaan soveltaa myös kehäsuuntaisille materiaaliominaisuuksille. Materiaalikokeiden simulointi osoittaa, että elementtimenetelmää voidaan käyttää materiaalimallin määrittämisen apuvälineenä.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[spa] Mediante el Análisis de Elementos Finitos es posible evaluar un diseño cerámico en función de su tipologia y de las propiedades mecánicas del material. Su aplicación permite considerar los factores tecnológicos que puedan haber condicionado el cambio de una tipologia cerámica. Este análisis se ilustra con los primeros tipos anfóricos romanos producidos en la actual Cataluña (Dressel 1, Tarraconense 1 y Pascuai 7).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within the latest decade high-speed motor technology has been increasingly commonly applied within the range of medium and large power. More particularly, applications like such involved with gas movement and compression seem to be the most important area in which high-speed machines are used. In manufacturing the induction motor rotor core of one single piece of steel it is possible to achieve an extremely rigid rotor construction for the high-speed motor. In a mechanical sense, the solid rotor may be the best possible rotor construction. Unfortunately, the electromagnetic properties of a solid rotor are poorer than the properties of the traditional laminated rotor of an induction motor. This thesis analyses methods for improving the electromagnetic properties of a solid-rotor induction machine. The slip of the solid rotor is reduced notably if the solid rotor is axially slitted. The slitting patterns of the solid rotor are examined. It is shown how the slitting parameters affect the produced torque. Methods for decreasing the harmonic eddy currents on the surface of the rotor are also examined. The motivation for this is to improve the efficiency of the motor to reach the efficiency standard of a laminated rotor induction motor. To carry out these research tasks the finite element analysis is used. An analytical calculation of solid rotors based on the multi-layer transfer-matrix method is developed especially for the calculation of axially slitted solid rotors equipped with wellconducting end rings. The calculation results are verified by using the finite element analysis and laboratory measurements. The prototype motors of 250 – 300 kW and 140 Hz were tested to verify the results. Utilization factor data are given for several other prototypes the largest of which delivers 1000 kW at 12000 min-1.