998 resultados para Finite Chian Rings


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper comprehensively analyzes the distortions of a circular wedge prism with 400 mm diameter in a scanner by method of optical-mechanical-thermal integrating analysis. The structure and intensity of the prism assembly is verified and checked, and the surface deformations of the prism under gravity load, as well as the thermo-elastic distortions of the prism, are analyzed in detail and evaluated, which is finally contrasted with the measured values of Zygo Mark interferometer. The results show: the maximal distortion of the prism assembly is 10 nm magnitude and the maximal stress is 0.441 Mpa, which has much tolerance to the precision requirement of structure and the admissible stress of material; the influence of heat effect on the surface deformations of prism is proved to be far greater than the influence of gravity load, so some strict temperature-controlled measures are to be considered when the scanner is used. (c) 2006 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

The slow, viscous flow past a thin screen is analyzed based on Stokes equations. The problem is reduced to an associated electric potential problem as introduced by Roscoe. Alternatively, the problem is formulated in terms of a Stokeslet distribution, which turns out to be equivalent to the first approach.

Special interest is directed towards the solution of the Stokes flow past a circular annulus. A "Stokeslet" formulation is used in this analysis. The problem is finally reduced to solving a Fredholm integral equation of the second kind. Numerical data for the drag coefficient and the mean velocity through the hole of the annulus are obtained.

Stokes flow past a circular screen with numerous holes is also attempted by assuming a set of approximate boundary conditions. An "electric potential" formulation is used, and the problem is also reduced to solving a Fredholm integral equation of the second kind. Drag coefficient and mean velocity through the screen are computed.

Part II

The purpose of this investigation is to formulate correctly a set of boundary conditions to be prescribed at the interface between a viscous flow region and a porous medium so that the problem of a viscous flow past a porous body can be solved.

General macroscopic equations of motion for flow through porous media are first derived by averaging Stokes equations over a volume element of the medium. These equations, including viscous stresses for the description, are more general than Darcy's law. They reduce to Darcy's law when the Darcy number becomes extremely small.

The interface boundary conditions of the first kind are then formulated with respect to the general macroscopic equations applied within the porous region. An application of such equations and boundary conditions to a Poiseuille shear flow problem demonstrates that there usually exists a thin interface layer immediately inside the porous medium in which the tangential velocity varies exponentially and Darcy's law does not apply.

With Darcy's law assumed within the porous region, interface boundary conditions of the second kind are established which relate the flow variables across the interface layer. The primary feature is a jump condition on the tangential velocity, which is found to be directly proportional to the normal gradient of the tangential velocity immediately outside the porous medium. This is in agreement with the experimental results of Beavers, et al.

The derived boundary conditions are applied in the solutions of two other problems: (1) Viscous flow between a rotating solid cylinder and a stationary porous cylinder, and (2) Stokes flow past a porous sphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let L be a finite geometric lattice of dimension n, and let w(k) denote the number of elements in L of rank k. Two theorems about the numbers w(k) are proved: first, w(k) ≥ w(1) for k = 2, 3, ..., n-1. Second, w(k) = w(1) if and only if k = n-1 and L is modular. Several corollaries concerning the "matching" of points and dual points are derived from these theorems.

Both theorems can be regarded as a generalization of a theorem of de Bruijn and Erdös concerning ʎ= 1 designs. The second can also be considered as the converse to a special case of Dilworth's theorem on finite modular lattices.

These results are related to two conjectures due to G. -C. Rota. The "unimodality" conjecture states that the w(k)'s form a unimodal sequence. The "Sperner" conjecture states that a set of non-comparable elements in L has cardinality at most max/k {w(k)}. In this thesis, a counterexample to the Sperner conjecture is exhibited.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis discusses simulations of earthquake ground motions using prescribed ruptures and dynamic failure. Introducing sliding degrees of freedom led to an innovative technique for numerical modeling of earthquake sources. This technique allows efficient implementation of both prescribed ruptures and dynamic failure on an arbitrarily oriented fault surface. Off the fault surface the solution of the three-dimensional, dynamic elasticity equation uses well known finite-element techniques. We employ parallel processing to efficiently compute the ground motions in domains containing millions of degrees of freedom.

Using prescribed ruptures we study the sensitivity of long-period near-source ground motions to five earthquake source parameters for hypothetical events on a strike-slip fault (Mw 7.0 to 7.1) and a thrust fault (Mw 6.6 to 7.0). The directivity of the ruptures creates large displacement and velocity pulses in the ground motions in the forward direction. We found a good match between the severity of the shaking and the shape of the near-source factor from the 1997 Uniform Building Code for strike-slip faults and thrust faults with surface rupture. However, for blind thrust faults the peak displacement and velocities occur up-dip from the region with the peak near-source factor. We assert that a simple modification to the formulation of the near-source factor improves the match between the severity of the ground motion and the shape of the near-source factor.

For simulations with dynamic failure on a strike-slip fault or a thrust fault, we examine what constraints must be imposed on the coefficient of friction to produce realistic ruptures under the application of reasonable shear and normal stress distributions with depth. We found that variation of the coefficient of friction with the shear modulus and the depth produces realistic rupture behavior in both homogeneous and layered half-spaces. Furthermore, we observed a dependence of the rupture speed on the direction of propagation and fluctuations in the rupture speed and slip rate as the rupture encountered changes in the stress field. Including such behavior in prescribed ruptures would yield more realistic ground motions.