972 resultados para Experimental Problems
Resumo:
This article analyses the effects of NGO microfinance programmes on household welfare in Vietnam. Data on 470 households across 25 villages were collected using a quasi-experimental survey approach to overcome any self-selection bias. The sample was designed so that member households of microfinance programmes were compared with non-member households with similar characteristics. The analysis shows no significant effects of participation in NGO microfinance on household welfare, proxied by income and consumption per adult equivalent.
Resumo:
It is commonly perceived that variables ‘measuring’ different dimensions of teaching (construed as instructional attributes) used in student evaluation of teaching (SET) questionnaires are so highly correlated that they pose a serious multicollinearity problem for quantitative analysis including regression analysis. Using nearly 12000 individual student responses to SET questionnaires and ten key dimensions of teaching and 25 courses at various undergraduate and postgraduate levels for multiple years at a large Australian university, this paper investigates whether this is indeed the case and if so under what circumstances. This paper tests this proposition first by examining variance inflation factors (VIFs), across courses, levels and over time using individual responses; and secondly by using class averages. In the first instance, the paper finds no sustainable evidence of multicollinearity. While, there were one or two isolated cases of VIFs marginally exceeding the conservative threshold of 5, in no cases did the VIFs for any of the instructional attributes come anywhere close to the high threshold value of 10. In the second instance, however, the paper finds that the attributes are highly correlated as all the VIFs exceed 10. These findings have two implications: (a) given the ordinal nature of the data ordered probit analysis using individual student responses can be employed to quantify the impact of instructional attributes on TEVAL score; (b) Data based on class averages cannot be used for probit analysis. An illustrative exercise using level 2 undergraduate courses data suggests higher TEVAL scores depend first and foremost on improving explanation, presentation, and organization of lecture materials.
Resumo:
The objective of this project is to investigate the strain-rate dependent mechanical behaviour of single living cells using both experimental and numerical techniques. The results revealed that living cells behave as porohyperlastic materials and that both solid and fluid phases within the cells play important roles in their mechanical responses. The research reported in this thesis provides a better understanding of the mechanisms underlying the cellular responses to external mechanical loadings and of the process of mechanical signal transduction in living cells. It would help us to enhance knowledge of and insight into the role of mechanical forces in supporting tissue regeneration or degeneration.
Resumo:
This paper reports the details of an experimental study of cold-formed steel hollow section columns at ambient and elevated temperatures. In this study the global buckling behaviour of cold-formed Square Hollow Section (SHS) slender columns under axial compression was investigated at various uniform elevated temperatures up to 700℃. The results of these column tests are reported in this paper, which include the buckling/failure modes at elevated temperatures, and ultimate load versus temperature curves. Finite element models of tested columns were also developed and their behaviour and ultimate capacities at ambient and elevated temperatures were studied. Fire design rules given in European and American standards including the Direct Strength Method (DSM) based design rules were used to predict the ultimate capacities of tested columns at elevated temperatures. Elevated temperature mechanical properties and stress-strain models given in European steel design standards and past researches were used with design rules and finite element models to investigate their effects on SHS column capacities. Comparisons of column capacities from tests and finite element analyses with those predicted by current design rules were used to determine the accuracy of currently available column design rules in predicting the capacities of SHS columns at elevated temperatures and the need to use appropriate elevated temperature material stress-strain models. This paper presents the important findings derived from the comparisons of these column capacities.
Resumo:
This research study comprehensively analyses the dynamics of nitrogen and suspended solids removal in stormwater biofilters. The study focuses on pollutant removal during an event with time, rather than the conventional event-mean analysis. Antecedent dry days (number of days in between rainfall) during which biofilters remain dry and the inflow concentration of pollutants were two other important variables analysed in this study. The research outcome highlights the significance of dry-phase processes and the process of stabilization on filter performance and sets a paradigm shift from the current approach towards an innovative way of performance analysis of biofilters.
Resumo:
There is an increasing need in biology and clinical medicine to robustly and reliably measure tens-to-hundreds of peptides and proteins in clinical and biological samples with high sensitivity, specificity, reproducibility and repeatability. Previously, we demonstrated that LC-MRM-MS with isotope dilution has suitable performance for quantitative measurements of small numbers of relatively abundant proteins in human plasma, and that the resulting assays can be transferred across laboratories while maintaining high reproducibility and quantitative precision. Here we significantly extend that earlier work, demonstrating that 11 laboratories using 14 LC-MS systems can develop, determine analytical figures of merit, and apply highly multiplexed MRM-MS assays targeting 125 peptides derived from 27 cancer-relevant proteins and 7 control proteins to precisely and reproducibly measure the analytes in human plasma. To ensure consistent generation of high quality data we incorporated a system suitability protocol (SSP) into our experimental design. The SSP enabled real-time monitoring of LC-MRM-MS performance during assay development and implementation, facilitating early detection and correction of chromatographic and instrumental problems. Low to sub-nanogram/mL sensitivity for proteins in plasma was achieved by one-step immunoaffinity depletion of 14 abundant plasma proteins prior to analysis. Median intra- and inter-laboratory reproducibility was <20%, sufficient for most biological studies and candidate protein biomarker verification. Digestion recovery of peptides was assessed and quantitative accuracy improved using heavy isotope labeled versions of the proteins as internal standards. Using the highly multiplexed assay, participating laboratories were able to precisely and reproducibly determine the levels of a series of analytes in blinded samples used to simulate an inter-laboratory clinical study of patient samples. Our study further establishes that LC-MRM-MS using stable isotope dilution, with appropriate attention to analytical validation and appropriate quality c`ontrol measures, enables sensitive, specific, reproducible and quantitative measurements of proteins and peptides in complex biological matrices such as plasma.
Resumo:
Advancements in sleep medicine have been escalating ever since research began appearing in the 1950s. As with most early clinical trials, women were excluded from participation. Even if researchers included women or addressed sex differences by age, reproductive stage was seldom considered. Recently, there has been an exponential increase in research on sleep in midlife and older women. This Practice Pearl briefly reviews the importance of adequate sleep, clinical assessment for sleep disorders, and guidelines for practice.
Resumo:
The synthesis of organoclays (OC) by intercalation of quaternary ammonium cation (QAC) into expanding clay minerals, notably montmorillonite (Mt), has attracted a great deal of attention during the past two decades. The OC have also found applications in the manufacture of clay polymer nanocomposites (CPN) and environmental remediation. Despite the wealth of information that exists on the formation and properties of OC, some problems remain to be resolved. The present contribution is an attempt at clarifying two outstanding issues, based on the literature and experimental data obtained by the authors over the past years. The first issue concerns the relationship between the cation exchange capacity (CEC) of the Mt and the basal spacing of the OC which, in turn, is dependent on the concentration and the nature of the added QAC. At a concentration less than 1 CEC, organo-Mt (OMt) formed using the QAC with a short alkyl chain length with nc < 16 (e.g., dodecyl trimethylammonium) gives basal spacings of 1.4–1.6 nm that are essentially independent of the CEC. However, for long-chain QAC with nc ≥ 16 (e.g., hexadecyl trimethylammonium), the basal spacing varies with the QAC concentration. For Mt with a CEC of 80–90 meq/100 g, the basal spacing of the OC increases gradually with the CEC and shows a sudden (stepwise) increase to 3.2–3.8 nm at a QAC concentration of 1.5 CEC and to 3.5–4.0 nm at a concentration of 2.0 CEC. The second issue pertains to the “locking” effect in QAC- and silane-modified pillared interlayered clays (PILC) and Mt. For silylated Mt, the “locking” effect results from the covalent bonding of silane to two adjacent layers within a single clay mineral particle. The same mechanism can operate in silane-grafted PILC but in this case, the “locking” effect may primarily be ascribed to the pillaring of adjacent basal surfaces by metal hydr(oxides).
Resumo:
In the structural health monitoring (SHM) field, long-term continuous vibration-based monitoring is becoming increasingly popular as this could keep track of the health status of structures during their service lives. However, implementing such a system is not always feasible due to on-going conflicts between budget constraints and the need of sophisticated systems to monitor real-world structures under their demanding in-service conditions. To address this problem, this paper presents a comprehensive development of a cost-effective and flexible vibration DAQ system for long-term continuous SHM of a newly constructed institutional complex with a special focus on the main building. First, selections of sensor type and sensor positions are scrutinized to overcome adversities such as low-frequency and low-level vibration measurements. In order to economically tackle the sparse measurement problem, a cost-optimized Ethernet-based peripheral DAQ model is first adopted to form the system skeleton. A combination of a high-resolution timing coordination method based on the TCP/IP command communication medium and a periodic system resynchronization strategy is then proposed to synchronize data from multiple distributed DAQ units. The results of both experimental evaluations and experimental–numerical verifications show that the proposed DAQ system in general and the data synchronization solution in particular work well and they can provide a promising cost-effective and flexible alternative for use in real-world SHM projects. Finally, the paper demonstrates simple but effective ways to make use of the developed monitoring system for long-term continuous structural health evaluation as well as to use the instrumented building herein as a multi-purpose benchmark structure for studying not only practical SHM problems but also synchronization related issues.
Resumo:
This work explores the potential of Australian native plants as a source of second-generation biodiesel for internal combustion engines application. Biodiesels were evaluated from a number of non-edible oil seeds which are grow naturally in Queensland, Australia. The quality of the produced biodiesels has been investigated by several experimental and numerical methods. The research methodology and numerical model developed in this study can be used for a broad range of biodiesel feedstocks and for the future development of renewable native biodiesel in Australia.
Resumo:
It is widely recognized that Dorothy Heathcote was a dynamic and radical teacher who transformed and continually reinvented drama teaching. She did this by allowing her emerging thinking and understandings to flow from, and be tested by, regular and intensive ‘practicing’ in the classroom. In this way theoretical claims were grounded and evidenced in authentic classroom practice. And yet, for all her impact, it is rare to hear the claim that Heathcote’s pedagogic breakthroughs resulted from a legitimate research methodology. Clever and charismatic teaching yes; research no. One of the world’s best teachers certainly, but not a researcher; even though every lesson was experimental and every classroom was a site for discovery. This paper investigates that conundrum firstly by acknowledging that Heathcote’s practice-led teaching approach to discovery did not map comfortably on to the established educational research traditions of the day. It argues that traditional research methodologies, with their well-established protocols and methods, could not understand or embrace a research process which does its work by creating ‘fictional realities’ of openness, allegory and uncertainty. In recent years however it can be seen that Heathcote’s practice led-teaching, so essential for advancing the field, closely aligns with what many contemporary researchers are now calling practice-led research or practice as research or, in many Nordic countries, artistic research. A form of performative research, practice-led research has not emerged from the field of education but rather from the creative arts. Seeking to develop ways of researching creative practice which is deeply sympathetic and respectful of that practice, artist-researchers have developed practice-led research “which is initiated in practice, where questions, problems, challenges are identified and formed by the needs of practice and practitioners” (Grey, 1996). This sits comfortably with Heathcote’s classroom priority of “discovering by trial, error and testing; using available materials with respect for their nature, and being guided by this appreciation of their potential” (Heathcote, 1967). The paper will conclude by testing the dynamics of Heathcote’s practice-led teaching against the six conditions of practice-led research (Haseman&Mafe, 2011), a testing which will allow for a re-interpretation and re-housing of Dorothy Heathcote’s classroom-based teaching methodology as a form of performative research in its own right.
Resumo:
Many researchers in the field of civil structural health monitoring have developed and tested their methods on simple to moderately complex laboratory structures such as beams, plates, frames, and trusses. Field work has also been conducted by many researchers and practitioners on more complex operating bridges. Most laboratory structures do not adequately replicate the complexity of truss bridges. This paper presents some preliminary results of experimental modal testing and analysis of the bridge model presented in the companion paper, using the peak picking method, and compares these results with those of a simple numerical model of the structure. Three dominant modes of vibration were experimentally identified under 15 Hz. The mode shapes and order of the modes matched those of the numerical model; however, the frequencies did not match.
Resumo:
The African philosophy of Ubuntu is typically characterised as a communitarian philosophy that emphasises virtues such as compassion, tolerance and harmony. In recent years there has been growing interest in this philosophy, and in how it can be applied to a variety of disciplines and issues. Several authors have provided useful introductions of Ubuntu in the field of business ethics and suggested theoretical ways in which it could be applied. The purpose of this paper is to extend this discussion by providing a more critical analysis of Ubuntu and business ethics with the aim of clarifying the role that Ubuntu can play, and providing guidance for further research in this area. The analysis consists of three sections. In the first, certain problems are identified within the existing literature. This is followed by a consideration of alternative perspectives and interpretations of Ubuntu. The last section, following from the first two, identifies specific areas requiring further research, both empirical and non-empirical, as well as ways in which Ubuntu could be fruitfully applied.
Resumo:
The kaolinite (Kaol) intercalated with potassium acetate (Ac) was prepared and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetry. Molecular dynamic simulation was performed to investigate the structure of Kaol–Ac intercalation complex and the hydrogen bonds between Kaol and intercalated Ac andwater using INTERFACE forcefield. The acetate anions andwater arranged in a bilayer structure in the interlayer space of Kaol. The potassium cations distributed in the interlayer space and strongly coordinated with acetate anions aswell aswater rather than keyed into the ditrigonal holes of tetrahedral surface of Kaol. Strong hydrogen bonds formed between the hydrogen atoms of hydroxyl on the octahedral surface and oxygen atoms of both acetate anions and water. The acetate anions andwater also weakly bonded hydrogen to the silica tetrahedral surface through their hydrogen atoms with the oxygen atoms of silica tetrahedral surface.