624 resultados para Eutrophication.
Resumo:
Carbon and nitrogen loading to streams and rivers contributes to eutrophication as well as greenhouse gas (GHG) production in streams, rivers and estuaries. My dissertation consists of three research chapters, which examine interactions and potential trade-offs between water quality and greenhouse gas production in urban streams of the Chesapeake Bay watershed. My first research project focused on drivers of carbon export and quality in an urbanized river. I found that watershed carbon sources (soils and leaves) contributed more than in-stream production to overall carbon export, but that periods of high in-stream productivity were important over seasonal and daily timescales. My second research chapter examined the influence of urban storm-water and sanitary infrastructure on dissolved and gaseous carbon and nitrogen concentrations in headwater streams. Gases (CO2, CH4, and N2O) were consistently super-saturated throughout the course of a year. N2O concentrations in streams draining septic systems were within the high range of previously published values. Total dissolved nitrogen concentration was positively correlated with CO2 and N2O and negatively correlated with CH4. My third research chapter examined a long-term (15-year) record of GHG emissions from soils in rural forests, urban forest, and urban lawns in Baltimore, MD. CO2, CH4, and N2O emissions showed positive correlations with temperature at each site. Lawns were a net source of CH4 + N2O, whereas forests were net sinks. Gross CO2 fluxes were also highest in lawns, in part due to elevated growing-season temperatures. While land cover influences GHG emissions from soils, the overall role of land cover on this flux is very small (< 0.5%) compared with gases released from anthropogenic sources, according to a recent GHG budget of the Baltimore metropolitan area, where this study took place.
Resumo:
A large SAV bed in upper Chesapeake Bay has experienced several abrupt shifts over the past half-century, beginning with near-complete loss after a record-breaking flood in 1972, followed by an unexpected, rapid resurgence in the early 2000’s, then partial decline in 2011 following another major flood event. Together, these trends and events provide a unique opportunity to study a recovering SAV ecosystem from several different perspectives. First, I analyzed and synthesized existing time series datasets to make inferences about what factors prompted the recovery. Next, I analyzed existing datasets, together with field samples and a simple hydrodynamic model to investigate mechanisms of SAV bed loss and resilience to storm events. Finally, I conducted field deployments and experiments to explore how the bed affects internal physical and biogeochemical processes and what implications those effects have for the dynamics of the system. I found that modest reductions in nutrient loading, coupled with several consecutive dry years likely facilitated the SAV resurgence. Furthermore, positive feedback processes may have played a role in the sudden nature of the recovery because they could have reinforced the state of the bed before and after the abrupt shift. I also found that scour and poor water clarity associated with sediment deposition during the 2011 flood event were mechanisms of plant loss. However, interactions between the bed, water flow, and waves served as mechanisms of resilience because these processes created favorable growing conditions (i.e., clear water, low flow velocities) in the inner core of the bed. Finally, I found that that interactions between physical and biogeochemical processes led to low nutrient concentrations inside the bed relative to outside the bed, which created conditions that precluded algal growth and reinforced vascular plant dominance. This work demonstrates that positive feedbacks play a central role in SAV resilience to both chronic eutrophication as well as acute storm events. Furthermore, I show that analysis of long-term ecological monitoring data, together with field measurements and experiments, can be an effective approach for understanding the mechanisms underlying ecosystem dynamics.
Resumo:
For the formulation of policies, laws and regulations for management of fisheries and aquatic systems there is a requirement for scientific knowledge to guide in this formulation. Such knowledge is used to guide in sustainable management of capture fisheries, integrating lake productivity processes into fisheries management, prevention of pollution and eutrophication of the aquatic environment, control of invasive weeds e.g. water hyacinth, enhancement of aquaculture production, reduction of post-harvest fish losses and ensuring fish quality, development of options for optimization of socio-economic benefits from fisheries and for co-management.
Resumo:
The aims of this study were: i) assessing the trophic state of the Mendubim reservoir (semi-arid, Rio Grande do Norte, Brazil; 05° 38 99,0 S 36°55 98,0 W) based on chlorophyll-a, total phosphorus and nitrogen concentrations and water transparency; ii) relating the patterns of temporal variation of zooplankton and phytoplankton to the trophic state of the reservoir and iii) investigating the carrying capacity of the reservoir for cage fish farming. The samplingwas done monthly from July 2006 to July 2007 in three stations at the reservoir: next to the dam (barrage), in the central region and in the mouth of the main tributary. The abiotic and biotic variables analyzed were: Secchi depth, volatiles and fixed suspended solids, chlorophyll-a, total phosphorus and nitrogen, TN:TP ratio and mesozooplankton and phytoplankton composition and biomass. The results showed that the reservoir can be considered as mesotrophic with mean concentrations of total nitrogen, phosphorus and chlorophyll-a equal to 1711, 1 μg.L-1, 30,8 μg.L-1 and 5,62 μg.L-1 respectively. The Cyanophyceae class was the most representative in terms of density, with the presence of potentially toxic species such as Microcystis aeruginosa, Planktothrix planctonica, Cylindrospermopsis raciborskii, Aphanizomenon sp. ,Aphanocapsa delicatissima and Pseudanabaena acicularis. Among the zooplankton, the genus Notodiaptomus presented the largest biomass values. Overall, our results show that the light limitation should explain the weak relationship between chlorophyll-a and total phosphorus and nitrogen concentrations. We concluded that the water of Mendubim reservoir is suitable for intensive fish cage aquaculture. Based on the carrying capacity calculations for this reservoir, we found that the maximum sustainable yield of tilapias in cages in the reservoir is 126 ton per year assuming a factor of food conversion of 1.5: 1.0 and a phosphorus content in the fish food of 1%
Resumo:
Coral reefs worldwide are affected by increasing dissolved inorganic carbon (DIC) and organic carbon (DOC) concentrations due to ocean acidification (OA) and coastal eutrophication. These two stressors can occur simultaneously, particularly in near-shore reef environments with increasing anthropogenic pressure. However, experimental studies on how elevated DIC and DOC interact are scarce and fundamental to understanding potential synergistic effects and foreseeing future changes in coral reef function. Using an open mesocosm experiment, the present study investigated the impact of elevated DIC (pHNBS: 8.2 and 7.8; pCO2: 377 and 1076 μatm) and DOC (added as 833 μmol L-1 of glucose) on calcification and photosynthesis rates of two common calcifying green algae, Halimeda incrassata and Udotea flabellum, in a shallow reef environment. Our results revealed that under elevated DIC, algal photosynthesis decreased similarly for both species, but calcification was more affected in H. incrassata, which also showed carbonate dissolution rates. Elevated DOC reduced photosynthesis and calcification rates in H. incrassata, while in U. flabellum photosynthesis was unaffected and thalus calcification was severely impaired. The combined treatment showed an antagonistic effect of elevated DIC and DOC on the photosynthesis and calcification rates of H. incrassata, and an additive effect in U. flabellum. We conclude that the dominant sand dweller H. incrassata is more negatively affected by both DIC and DOC enrichments, but that their impact could be mitigated when they occur simultaneously. In contrast, U. flabellum can be less affected in coastal eutrophic waters by elevated DIC, but its contribution to reef carbonate sediment production could be further reduced. Accordingly, while the capacity of environmental eutrophication to exacerbate the impact of OA on algal-derived carbonate sand production seems to be species-specific, significant reductions can be expected under future OA scenarios, with important consequences for beach erosion and coastal sediment dynamics.
Resumo:
Marine shrimp farming has grown exponentially during the last years in Brazil. In spite of the promising economical situation, this activity is facing an increasing criticism due to its environmental impact. Thus, the necessity of alternatives to mitigate environmental degradation caused by this activity. An alternative that is being studied is the policulture that is the integrated culture of two or more organisms, normally one of them a filtering organism. Among filtering organisms, macroalgae are very practicable because they are efficient in the removal of the exceeding nutrients of the water and do not leave residues in the water. Besides, the integrated culture with macroalgae allows the economical exploration of the seaweed (for the manufacture of jelly and jam, for the dairy industry, pharmaceuticals, etc.) along with possibility of a sustainable aquaculture. In the present experiment, the development of the seaweed Gracilaria birdiae, the influence and tolerance of this species to the environmental parameters, and its absorption efficiency in relation with the three kinds of macronutrients (NH4+, NO3- and PO4-3) found in the effluents of marine shrimp farming was studied. The experiment was divided in two parts: a laboratorial part and one part carried under natural conditions. The water used in the laboratory trial was collected in the shrimp ponds of Tecnarão farm and distributed in aquaria containing 20 g of G. birdiae. In the field trial, 0.5 kg of G. birdiae was inserted in PVC cages cultivated in the farm. The results of the study showed a modest growth of G. birdiae, probably due to its low tolerance to highly eutrophicated environments. However, the removal of nutrients was very expressive. Ammonia was reduced in approximately 34 %. Ortho-phosphate showed a reduction of 93.5 %. The capacity of biofiltration of the NO3- by the macro algae was of 100 %, showing that G. birdiae is a seaweed-filtered with a high level of removal for this nutrient under laboratorial conditions. In spite of the low growth of the macro algae in the experiment, the results in relation to the removal of nutrients of the water was encouraging, suggesting that this species can be an efficient biofilter and thus, a strong candidate to be used in a sustainable aquaculture
Resumo:
The incidence of toxic cyanobacterial blooms is one of the important consequences of eutrophication in aquatic ecosystems. It is a very common phenomenon in reservoirs and shrimp ponds in the State of Rio Grande do Norte (RN), Brazil. Cyanobacterias produce toxins which can affect aquatic organisms and men trough the food chain. Aiming to contribute to the studies of cyanobacterias in RN, we propose: a) to evaluate the toxicity of isolated cyanobacterias in important fresh-water environments; and b) to verify the effects of both natural and cultured blooms occurred in reservoirs for human supply and in the cladoceran Ceriodaphnia silvestrii. This study was carried out using samples of natural blooms occurred between March and October of 2004 in Gargalheiras Dam (08º L e 39º W), in July of 2004 in Armando Ribeiro Gonçalves Dam (06o S e 37o W) and in commercial shrimp ponds (Litopenaeus vannamei) located in fresh-water environments. The samples were collected with plankton net (20µm.) for identification, isolation and obtaining of phytoplanktonic biomass for liophilization and later toxicity bioassays. The toxicity of cultured samples and natural blooms was investigated through bioassays in Swiss mice. Quantification of cyanobacteria in samples was conducted following the Ütermol method, with 300mL samples fixed with lugol. The toxicity test with Ceriodaphnia silvestrii followed ABNT, 2001 recommendations, and were accomplished with natural hepatotoxic bloom s samples and cultured samples of both non-toxic and neurotoxic C. raciborskii. In this test, five newborns, aged between 6 and 24 hours, were exposed to different concentrations (0 a 800 mg.L-1) of crude cyanobacterial extracts during 24 and 48 hours. Three replicates were used per treatment. The pH, temperature and dissolved oxygen at the beginning and after 24 and 48hours from the test were measured. We estimated the CL50 through the Trimmed Spearman-Karber method. The blooms were constituted by Microcystis panniformis, M. aeruginosa, Anabaena circinalis, Cylindrospermopsis raciborskii and Planktothrix agardhii, producers of mycrocistin-LR confirmed with HPLC analysis. Samples of hepatotoxic blooms registered toxinogenic potential for C. silvestrii, with CL50-24h value of 47.48 mg.L-1 and CL5048h of 38.15 mg.L-1 for GARG samples in march/2005; CL50-24h of 113,13 mg.L-1 and CL5048h of 88,24 mg.L-1 for ARG July/2004; CL50-24h of 300.39 mg.L-1 and CL50-48h of 149.89 mg.L-1 for GARG October/2005. For cultured samples, values of CL50-24h and CL50-48h for C. raciborskii toxic strains were 228.05 and 120.28 mg.L-1, respectively. There was no mortality of C. silvestrii during the tests with non-toxic C. raciborskii strain. The toxicity test with C. silvestrii presented good sensitivity degree to cyanotoxins. The toxicity of natural hepatotoxic blooms samples (microcystins) and cultured neurotoxic saxitoxins producer samples analyzed in this study give us strong indications of that toxin s influence on the zooplanktonic community structure in tropical aquatic environments. Eleven cyanobacteria strains were isolated, representing 6 species: Anabaenopsis sp., Cylindrospermopsis raciborskii, Chroococcus sp., Microcystis panniformis, Geitlerinema unigranulatum e Planktothrix agardhii. None presented toxicity in Swiss mice. The strains were catalogued and deposited in the Laboratório de Ecologia e Toxicologia de Organismos Aquáticos (LETMA), in UFRN, and will be utilized in ecotoxicológical and ecophysiological studies, aiming to clarify the causes and control of cyanobacterial blooms in aquatic environments in RN. This state s reservoirs must receive broader attention from the authorities, considering the constant blooms occurring in waters used for human consumption
Resumo:
The response of zooplankton assemblages to variations in the water quality of four man-made lakes, caused by eutrophication and siltation, was investigated by means of canonical correspondence analysis. Monte Carlo simulations using the CCA eingenvalues as test statistics revealed that changes in zooplankton species composition along the environmental gradients of trophic state and abiogenic turbidity were highly significant. The species Brachionus calyciflorus, Thermocyclops sp. and Argyrodiaptomus sp. were good indicators of eutrophic conditions while the species Brachionus dolabratus, Keratella tropica and Hexarthra sp. were good indicators of high turbidity due to suspended sediments. The rotifer genus Brachionus was the most species-rich taxon, comprising five species which were associated with different environmental conditions. Therefore, we tested whether this genus alone could potentially be a better biological indicator of these environmental gradients than the entire zooplankton assemblages or any other random set of five species. The ordination results show that the five Brachionus species alone did not explain better the observed pattern of environmental variation than most random sets of five species. Therefore, this genus could not be selected as a target taxon for more intensive environmental monitoring as has been previously suggested by Attayde and Bozelli (1998). Overall, our results show that changes in the water quality of man-made lakes in a tropical semi-arid region have significant effects on the structure of zooplankton assemblages that can potentially affect the functioning of these ecosystems
Resumo:
A preocupação com o meio ambiente, nomeadamente na descarga de águas residuais, consumo de água excessivo e produção de resíduos industriais, está cada vez mais presente no quotidiano. Devido a estas problemáticas, efetuou-se a avaliação de impacte ambiental (AIA) do processo produtivo das rolhas de cortiça naturais, tratamento das águas de cozedura da cortiça (estudo da possível reutilização do efluente tratado) e valorização de subprodutos – resíduo sólido (raspa de cortiça), sendo estes os objetivos propostos para a realização da presente dissertação. Na AIA, efetuada no decorrer das fases da Análise do Ciclo de Vida (ACV), foram selecionadas 8 categorias de impacte – aquecimento global, acidificação, dessecação, toxicidade e ecotoxicidade, eutrofização, consumo de recursos não renováveis e oxidação foto-química. A água de cozedura caracterizou-se por uma elevada carga poluente, apresentando elevada concentração de cor, Carência Química de Oxigénio (CQO), taninos e lenhina e Sólidos Suspensos Totais (SST). O processo de tratamento proposto consistiu num pré-tratamento por ultrafiltração (UF), com membranas de 30.000 e 20.000 MWCO, seguido de adsorção por carvão ativado (comercial e produzido a partir de raspa de cortiça). No tratamento por UF, utilizando uma membrana de 30.000 MWCO, foram obtidas percentagens de remoção para a primeira amostra de água de cozedura de 74,8 % para a cor, 33,1 % para a CQO e para a segunda amostra de 85,2 % para a cor e 41,8 % para a CQO. Posteriormente, apenas para a segunda amostra de água de cozedura e com uma membrana de 20.000 MWCO, as percentagens de remoção obtidas foram superiores, de 93% para a cor, 68,9 % para a CQO, 88,4 % para taninos e lenhina e 43,0 % para azoto total. No tratamento por adsorção com carvão ativado estudou-se o tempo de equilíbrio do carvão ativado comercial e do carvão ativado produzido a partir de aparas de cortiça, seguindo-se o estudo das isotérmicas de adsorção, no qual foram analisados os parâmetros da cor e CQO para cada solução. Os ajustes dos modelos teóricos aos pontos experimentais demonstraram que ambos os modelos (Langmuir e Freundlich) poderiam ser considerados, uma vez que apresentaram ajustes idênticos. Relativamente ao tratamento de adsorção em contínuo do permeado, obtido por UF com membrana de 20.000 MWCO, constatou-se que ambos os carvões ativados (comercial e produzido) não ficaram saturados, tendo em consideração os tempos de saturação estimados pela capacidade máxima de adsorção (determinada para a isotérmica de Langmuir) e as representações gráficas dos valores experimentais obtidos para cada ensaio. No ensaio de adsorção com carvão ativado comercial verificou-se que o efluente tratado poderia ser descarregado no meio hídrico ou reutilizado no processo industrial (considerando os parâmetros analisados), uma vez que até aos 11 minutos de ensaio a concentração da solução à saída foi de 111,50 mg/L O2, para a CQO, e incolor, numa diluição de 1:20. Em relação à adsorção em contínuo com carvão ativado produzido verificou-se no ensaio 4 que o efluente resultante apresentou uma concentração de CQO de 134,5 mg/L O2 e cor não visível, numa diluição de 1:20, ao fim de 1h22 min de ensaio. Assim, concluiu-se que os valores obtidos são inferiores aos valores limite de emissão (VLE) presentes no Decreto-Lei n.º 236/98 de 1 de Agosto. O carvão ativado produzido apresentou elevada área superficial específica, com 870 m2/g, comparativamente ao carvão comercial que foi de 661 m2/g. O processo de extração da suberina a partir de raspa de cortiça isenta de extraíveis, efetuado através da metanólise alcalina, apresentou percentagens de extração superiores aos restantes métodos. No processo efetuado em scale-up, por hidrólise alcalina, obteve-se uma extração de 3,76 % de suberina. A aplicação da suberina no couro demonstrou que esta cera apresenta enormes potencialidades, uma vez que a sua aplicação confere ao couro um aspeto sedoso, com mais brilho e um efeito de “pull-up”.
Resumo:
Nitrogen (N) is an essential plant nutrient in maize production, and if considering only natural sources, is often the limiting factor world-wide in terms of a plant’s grain yield. For this reason, many farmers around the world supplement available soil N with synthetic man-made forms. Years of over-application of N fertilizer have led to increased N in groundwater and streams due to leaching and run-off from agricultural sites. In the Midwest Corn Belt much of this excess N eventually makes its way to the Gulf of Mexico leading to eutrophication (increase of phytoplankton) and a hypoxic (reduced oxygen) dead zone. Growing concerns about these types of problems and desire for greater input use efficiency have led to demand for crops with improved N use efficiency (NUE) to allow reduced N fertilizer application rates and subsequently lower N pollution. It is well known that roots are responsible for N uptake by plants, but it is relatively unknown how root architecture affects this ability. This research was conducted to better understand the influence of root complexity (RC) in maize on a plant’s response to N stress as well as the influence of RC on other above-ground plant traits. Thirty-one above-ground plant traits were measured for 64 recombinant inbred lines (RILs) from the intermated B73 & Mo17 (IBM) population and their backcrosses (BCs) to either parent, B73 and Mo17, under normal (182 kg N ha-1) and N deficient (0 kg N ha-1) conditions. The RILs were selected based on results from an earlier experiment by Novais et al. (2011) which screened 232 RILs from the IBM to obtain their root complexity measurements. The 64 selected RILs were comprised of 31 of the lowest complexity RILs (RC1) and 33 of the highest complexity RILs (RC2) in terms of root architecture (characterized as fractal dimensions). The use of the parental BCs classifies the experiment as Design III, an experimental design developed by Comstock and Robinson (1952) which allows for estimation of dominance significance and level. Of the 31 traits measured, 12 were whole plant traits chosen due to their documented response to N stress. The other 19 traits were ear traits commonly measured for their influence on yield. Results showed that genotypes from RC1 and RC2 significantly differ for several above-ground phenotypes. We also observed a difference in the number and magnitude of N treatment responses between the two RC classes. Differences in phenotypic trait correlations and their change in response to N were also observed between the RC classes. RC did not seem to have a strong correlation with calculated NUE (ΔYield/ΔN). Quantitative genetic analysis utilizing the Design III experimental design revealed significant dominance effects acting on several traits as well as changes in significance and dominance level between N treatments. Several QTL were mapped for 26 of the 31 traits and significant N effects were observed across the majority of the genome for some N stress indicative traits (e.g. stay-green). This research and related projects are essential to a better understanding of plant N uptake and metabolism. Understanding these processes is a necessary step in the progress towards the goal of breeding for better NUE crops.
Resumo:
The chemical factors (inorganic nitrogen, phosphate, silicic acid) that potentially or actually control primary production were determined for the Bay of Brest, France, a macrotidal ecosystem submitted to high-nitrate-loaded freshwater inputs (winter nitrate freshwater concentrations >700 mu M, Si:N molar ratio as low as 0.2, i.e. among the lowest ever published). Intensive data collection and observations were carried out from February 1993 to March 1994 to determine the variations of physical [salinity, temperature, photosynthetically active radiation (PAR), freshwater discharges] and chemical (oxygen and nutrients) parameters and their impacts on the phytoplankton cycle (fluorescence, pigments, primary production). With insufficient PAR the winter stocks of nutrients were almost nonutilized and the nitrate excess was exported to the adjacent ocean, due to rapid tidal exchange. By early April, a diatom-dominated spring bloom developed (chlorophyll a maximum = 7.7 mu g l(-1); primary production maximum = 2.34 g C m(-2) d(-1)) under high initial nutrient concentrations. Silicic acid was rapidly exhausted over the whole water column; it is inferred to be the primary limiting factor responsible for the collapse of the spring bloom by mid-May. Successive phytoplankton developments characterized the period of secondary blooms during summer and fall (successive surface chlorophyll a maxima = 3.5, 1.6, 1.8 and 1.0 mu g l(-1); primary production = 1.24, 1.18 and 0.35 g C m(-2) d(-1)). Those secondary blooms developed under lower nutrient concentrations, mostly originating from nutrient recycling. Until August, Si and P most likely limited primary production, whereas the last stage of the productive period in September seemed to be N limited instead, this being a period of total nitrate depletion in almost the whole water column. Si limitation of spring blooms has become a common feature in coastal ecosystems that receive freshwater inputs with Si:N molar ratios <1. The peculiarity of Si Limitation in the Bay of Brest is its extension through the summer period.
Resumo:
The coastal zone of the Nord – Pas de Calais / Picardie showed dysfonctioning patterns of the ecosystem considered to be link to human activities along shores. These results in regular massive development of species, such as the phytoplanktonic seaweed, Phaeocystis sp. which life cycle was partly linked to nutrients availability and consequently to anthropogenic inputs. As part of the evaluation of the influence of continental inputs on the marine environment (nitrates, phosphates,…) and on potential eutrophication processes, of the estimation of the efficiency of the sewage treatments plants in the possible elimination of dumpings and in order to establish a long-term survey to follow up the change in coastal waters quality, the regional nutrients monitoring network was implemented by Ifremer in collaboration with the Agence de l'Eau Artois-Picardie in 1992 in order to complete the REPHY (Phytoplankton and Phycotoxins) monitoring programme. This study reports the main results for the year 2015 in terms of temporal change of the main physico-chemical and biological parameters characteristic of water masses sampled along three transects offshore Dunkerque, Boulogne-sur-Mer and the Bay of Somme.
Resumo:
Time series of physico-chemical data and concentrations (cell L-1) of the toxic dinoflagellate Alexandrium minutum collected in the Rance macrotidal estuary (Brittany, France) were analyzed to understand the physico-chemical processes of the estuary and their relation to changes in bloom development from 1996 to 2009. The construction of the tidal power plant in the north and the presence of a lock in the south have greatly altered hydrodynamics, blocking the zone of maximum turbidity upstream, in the narrowest part of the estuary. Alexandrium minutum occurs in the middle part of the estuary. Most physical and chemical parameters of the Rance estuary are similar to those observed elsewhere in Brittany with water temperatures between 15–18 °C, slightly lowered salinities (31.8–33.1 PSU), low river flow rates upstream and significant solar radiation (8 h day-1). A notable exception is phosphate input from the drainage basin which seems to limit bloom development: in recent years, bloom decline can be significantly correlated with the decrease in phosphate input. On the other hand, the chemical processes occurring in the freshwater-saltwater interface do not seem to have an influence on these occurrences. The other hypotheses for bloom declines are discussed, including the prevalence of parasitism, but remain to be verified in further studies.
Resumo:
The Billings Complex and the Guarapiranga System are important strategic reservoirs for the city of São Paulo and surrounding areas because the water is used among other things, for the public water supply. They produce 19,000 liters of water per second and Supply water to 5.4 million people. Crude water is transferred from the Taquacetuba branch of the Billings Complex to the Guarapiranga Reservoir to regulate the water level of the reservoir. The objective of this study was to evaluate the water quality in the Taquacetuba branch, focusing on cyanobacteria and cyanotoxins. Surface water samples were collected in February (summer) and July (winter) of 2007. Analyses were conducted of physical, chemical, and biological variables of he water, cyanobacteria richness and density, and the presence of cyanotoxins. The water was classified as eutrophic-hypereutrophic. Cyanobacteria blooms were observed in both collection periods. The cyanobacteria bloom was most significant in July, reflecting lower water transparency and higher levels of total solids, suspended organic matter, chlorophyll-a, and cyanobacteria density in the surface water. Low richness and elevated dominance of the cyanobacteria were found in both periods. Cylindrospermopsis raciborskii was dominant in February, with 352 661.0 cel mL(-1), and Microcystis panniformis was dominant in July, with 1 866 725.0 cel mL(-1). Three variants of microcystin were found in February (MC-RR, MC-LR, MC-YR), as well as saxitoxin. The same variants of microcystin were found in July, but no saxitoxin was detected. Anatoxin-a and cylindropermopsin were not detected in either period. These findings are of great concern because the water in the Taquacetuba branch, which is transferred into the Guarapiranga Reservoir, is not treated nor managed. It is recommended that monitoring be intensified and more effective measures be taken by the responsible agencies to prevent the process of eutrophication and the consequent development of the cyanobacteria and their toxins.
Resumo:
Nutrient loading has been linked with severe water quality impairment, ranging from hypoxia to increased frequency of harmful algal blooms (HABs), loss of fisheries, and changes in biodiversity. Waters around the globe are experiencing deleterious effects of eutrophication; however, the relative amount of nitrogen (N) and phosphorus (P) reaching these waters is not changing proportionately, with high N loads increasingly enriched in chemically-reduced N forms. Research involving two urban freshwater and nutrient enriched systems, the Anacostia River, USA, a tributary of the Potomac River feeding into the Chesapeake Bay, and West Lake, Hangzhou, Zhejiang Province, China, was conducted to assess the response of phytoplankton communities to changing N-form and N/P-ratios. Field observations involving the characterization of ambient phytoplankton communities and N-forms, as well as experimental (nutrient enrichment) manipulations were used to understand shifts in phytoplankton community composition with increasing NH4+ loads. In both locations, a >2-fold increase in ambient NH4+:NO3- ratios was followed by a shift in the phytoplankton community, with diatoms giving way to chlorophytes and cyanobacteria. Enrichment experiments mirrored this, in that samples enriched with NH4+ lead to increased abundance of chlorophytes and cyanobacteria. This work shows that in both of these systems experiencing nutrient enrichment that NH4+ supports communities dominated by more chlorophytes and cyanobacteria than other phytoplankton groups.