911 resultados para Escape lanes.
Resumo:
This paper uses a unique Portuguese dataset to examine the effect of access to unemployment benefits (UBs) and their maximum potential duration on escape rates from unemployment. In examining the time profile of transitions out of unemployment, the principal contributions of the paper are twofold. First, it provides a detailed state space of potential outcomes: open-ended employment, fixed-term contracts, part-time work, government-provided jobs, self employment, and labour force withdrawal. Second, it is able to exploit major exogenous discontinuities in the maximum duration of unemployment benefits to identify disincentive effects. While confirming strong disincentive effects, it is shown that use of an aggregate hazard function regression model compounds very different and even contradictory effects of the determinants of unemployment.
Resumo:
A goal of phylogeography is to relate patterns of genetic differentiation to potential historical geographic isolating events. Quaternary glaciations, particularly the one culminating in the Last Glacial Maximum ~21 ka (thousands of years ago), greatly affected the distributions and population sizes of temperate marine species as their ranges retreated southward to escape ice sheets. Traditional genetic models of glacial refugia and routes of recolonization include these predictions: low genetic diversity in formerly glaciated areas, with a small number of alleles/haplotypes dominating disproportionately large areas, and high diversity including "private" alleles in glacial refugia. In the Northern Hemisphere, low diversity in the north and high diversity in the south are expected. This simple model does not account for the possibility of populations surviving in relatively small northern periglacial refugia. If these periglacial populations experienced extreme bottlenecks, they could have the low genetic diversity expected in recolonized areas with no refugia, but should have more endemic diversity (private alleles) than recently recolonized areas. This review examines evidence of putative glacial refugia for eight benthic marine taxa in the temperate North Atlantic. All data sets were reanalyzed to allow direct comparisons between geographic patterns of genetic diversity and distribution of particular clades and haplotypes including private alleles. We contend that for marine organisms the genetic signatures of northern periglacial and southern refugia can be distinguished from one another. There is evidence for several periglacial refugia in northern latitudes, giving credence to recent climatic reconstructions with less extensive glaciation.
Resumo:
Many lizard species will shed their tail as a defensive response (e.g., to escape a putative predator or aggressive conspecific). This caudal autotomy incurs a number of costs as a result of loss of the tail itself, loss of resources (i.e., stored in the tail or due to the cost of regeneration), and altered behavior. Few studies have examined the metabolic costs of caudal autotomy. A previous study demonstrated that geckos can move faster after tail loss as a result of reduced weight or friction with the substrate; however, there are no data for the effects of caudal autotomy on locomotory energetics. We examined the effect of tail loss on locomotory costs in the Cape dwarf gecko Lygodactylus capensis (similar to 0.9 g) using a novel method for collecting data on small lizards, a method previously used for arthropods. We measured CO2 production during 5-10 min of exhaustive exercise (in response to stimulus) and during a 45-min recovery period. During exercise, we measured speed (for each meter moved) as well as total distance traveled. Contrary to our expectations, tailless geckos overall expended less effort in escape running, moving both slower and for a shorter distance, compared with when they were intact. Tailless geckos also exhibited lower excess CO2 production (CO2 production in excess of normal resting metabolic rate) during exercising. This may be due to reduced metabolically active tissue (tails represent 8.7% of their initial body mass). An alternative suggestion is that a change in energy substrate use may take place after tail loss. This is an intriguing finding that warrants future biochemical investigation before we can predict the relative costs of tail loss that lizards might experience under natural conditions.
Resumo:
In the past few years, the development of light sources of the 4(th) generation, namely XUV/X-ray Free Electron Lasers provides to the scientific community outstanding tools to investigate matter under extreme conditions never obtained in laboratories so far. As theory is at its infancy, the analysis of matter via the self-emission of the target is of central importance. The characterization of such dense matter is possible if photons can escape the medium. As the absorption of K-shell X-ray transitions is minimal, it plays a key role in this study. We report here the first successful observation of K-shell emission of Nitrogen at 430 eV using an XUV-Free Electron Laser to irradiate solid Boron Nitride targets under exceptional conditions: photon energy of 92 eV, pulse duration of similar to 20 fs, micro focusing leading to intensities larger than 10(16) W/cm(2). Using a Bragg crystal of THM coupled to a CCD, we resolved K-shell line emission from different charge states. We demonstrate that the spectroscopic data allow characterization of electron heating processes when X-ray radiation is interacting with solid matter. As energy transport is non-trivial because the light source is monochromatic, these results have an important impact on the theory. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Background: Although horizontal gene transfer plays a pivotal role in bacteriophage evolution, many lytic phage genomes are clearly shaped by vertical evolution. We investigated the influence of minor genomic deletions and insertions on various phage-related phenotypic and serological properties. Findings. We collected ten different isolates of Pseudomonas aeruginosa bacteriophage KMV. All sequenced genomes (42-43 kb, long direct terminal repeats) are nearly identical, which intuitively implied strongly similar infections cycles. However, their latent periods vary between 21 and 28 minutes and they are able to lyse between 5 and 58% of a collection of 107 clinical P. aeruginosa strains. We also noted that phages with identical tail structures displayed profound differences in host spectra. Moreover, point mutations in tail and spike proteins were sufficient to evade neutralization by two phage-specific antisera, isolated from rabbits. Conclusion: Although all analyzed phages are 83-97% identical at the genome level, they display a surprisingly large variation in various phenotypic properties. The small overlap in host spectrum and their ability to readily escape immune defences against a nearly identical phage are promising elements for the application of these phages in phage therapy. © 2011 Ceyssens et al; licensee BioMed Central Ltd.
--------------------------------------------------------------------------------
Reaxys Database Information|
--------------------------------------------------------------------------------
Resumo:
Using direct numerical magneto-hydrodynamic (MHD) simulations, we demonstrate the evidence of two physically different types of vortex motions in the solar photosphere. Baroclinic motions of plasma in non-magnetic granules are the primary source of vorticity in granular regions of the solar photosphere, however, there is a significantly more efficient mechanism of vorticity production in strongly magnetised intergranular lanes. These swirly motions of plasma in intergranular magnetic field concentrations could be responsible for the generation of different types of MHD wave modes, for example, kink, sausage and torsional Alfven waves. These waves could transport a relevant amount of energy from the lower solar atmosphere and contribute to coronal plasma heating.
Resumo:
We present high-cadence observations and simulations of the solar photosphere, obtained using the Rapid Oscillations in the Solar Atmosphere imaging system and the MuRAM magnetohydrodynamic (MHD) code, respectively. Each data set demonstrates a wealth of magnetoacoustic oscillatory behavior, visible as periodic intensity fluctuations with periods in the range 110–600 s. Almost no propagating waves with periods less than 140 s and 110 s are detected in the observational and simulated data sets, respectively. High concentrations of power are found in highly magnetized regions, such as magnetic bright points and intergranular lanes. Radiative diagnostics of the photospheric simulations replicate our observational results, confirming that the current breed of MHD simulations are able to accurately represent the lower solar atmosphere. All observed oscillations are generated as a result of naturally occurring magnetoconvective processes, with no specific input driver present. Using contribution functions extracted from our numerical simulations, we estimate minimum G-band and 4170 Å continuum formation heights of 100 km and 25 km, respectively. Detected magnetoacoustic oscillations exhibit a dominant phase delay of −8◦ between the G-band and 4170 Å continuum observations, suggesting the presence of upwardly propagating waves.More than 73% of MBPs (73% from observations and 96% from simulations) display upwardly propagating wave phenomena, suggesting the abundant nature of oscillatory behavior detected higher in the solar atmosphere may be traced back to magnetoconvective processes occurring in the upper layers of the Sun’s convection zone.
Resumo:
The Rapid Oscillations in the Solar Atmosphere instrument reveals solar atmospheric fluctuations at high frequencies. Spectra of variations of the G-band intensity (IG ) and Ca II K-line intensity (IK ) show correlated fluctuations above white noise to frequencies beyond 300 mHz and 50 mHz, respectively. The noise-corrected G-band spectrum for f = 28-326 mHz shows a power law with exponent -1.21 ± 0.02, consistent with the presence of turbulent motions. G-band spectral power in the 25-100 mHz ("UHF") range is concentrated at the locations of magnetic bright points in the intergranular lanes and is highly intermittent in time. The intermittence of the UHF G-band fluctuations, shown by a positive kurtosis ?, also suggests turbulence. Combining values of IG , IK , UHF power, and ? reveals two distinct states of the solar atmosphere. State 1, including almost all the data, is characterized by low IG , IK , and UHF power and ? ˜ 6. State 2, including only a very small fraction of the data, is characterized by high IG , IK , and UHF power and ? ˜ 3. Superposed epoch analysis shows that the UHF power peaks simultaneously with spatio-temporal IG maxima in either state. For State 1, IK shows 3.5 minute chromospheric oscillations with maxima occurring 21 s after IG maxima implying a 150-210 km effective height difference. However, for State 2 the IK and IG maxima are simultaneous; in this highly magnetized environment sites of G-band and K-line emission may be spatially close together.
Resumo:
Transcriptionally erythropoietin (Epo) synthesis is tightly regulated by the hypoxia inducible factor (HIF), which is composed of one alpha and one beta subunit that are constitutively expressed. The beta subunit is non-variable, but three different alpha subunits give rise to three isoforms of HIF. The alpha subunit is proteasomally regulated in the presence of oxygen by hydroxylation of the proline in the LXXLAP motif of the oxygen dependent degradation (ODD) domain of HIFalpha, catalysed by members of the prolyl hydroxylase domain (PHD) family of enzymes. This allows the von Hippel Lindau (VHL) protein to associate with the alpha subunit, which is subsequently tagged with ubiquitin and degraded by the proteasome. Any defect in the oxygen sensing pathway that allows the alpha subunit to escape proteasomal regulation leads to elevated expression of HIF target genes.
Recently mutations in both VHL and PHD2 have been identified in a cohort of patients with erythrocytosis, but no mutations were found in the ODD domain of HIF1alpha. Instead, investigation of the homologous region in HIF-2alpha revealed four different mutations, Pro534Leu, Met535Val, Gly537Arg and Gly537Trp in seven individuals/families. Affected individuals presented at a young age with elevated serum Epo. Several individuals have a clinical history of thrombosis, but no evidence of a von Hippel Lindau-like syndrome.
To define how the four mutations relate to the erythrocytosis phenotype functional assays were performed in vitro. Binding of PHD2 to the four HIF-2alpha mutants was impaired to varying degrees, with both the Gly537 mutants showing the greatest reduction. The association of VHL with the hydroxylated Met535Val mutant peptide was similar to wild type HIF- 2alpha, but was decreased in the other three HIF-2alpha mutants. Expression of three HIF- 2alpha target genes, adrenomedullin, NDRG1 and VEGF, was significantly up-regulated in cells stably transfected with the mutants under normoxia compared to wild type HIF-2alpha. Mutations in the ODD domain of HIF-2alpha disrupt proteasomal regulation by reducing the association with PHD2 and hence hydroxylation. Furthermore the binding of VHL is also impaired, even when HIF-2alpha is hydroxylated. Examination of the three-dimensional structure of hydroxylated HIF-1alpha bound to VHL confirms that amino acids close to site of hydroxylation (Pro-531 in isoform 2) are important for this association. These observations, together with recent studies utilising murine models of erythrocytosis, support the PHD2-HIF-2alpha-VHL axis as the major regulator of erythropoietin.
Resumo:
Strains of the Burkholderia cepacia complex (Bcc) are opportunistic bacteria that can cause life-threatening infections in patients with cystic fibrosis and chronic granulomatous disease. Previous work has shown that Bcc isolates can persist in membrane-bound vacuoles within amoeba and macrophages without bacterial replication, but the detailed mechanism of bacterial persistence is unknown. In this study, we have investigated the survival of the Burkholderia cenocepacia strain J2315 within RAW264.7 murine macrophages. Strain J2315 is a prototypic isolate of the widespread and transmissible ET12 clone. Unlike heat-inactivated bacteria, which reach lysosomes shortly after internalization, vacuoles containing live B. cenocepacia J2315 accumulate the late endosome/lysosome marker LAMP-1 and start fusing with lysosomal compartments only after 6 h post internalization. Using fluorescent fluid-phase probes, we also demonstrated that B. cenocepacia-containing vacuoles continued to interact with newly formed endosomes, and maintained a luminal pH of 6.4 +/- 0.12. In contrast, vacuoles containing heat-inactivated bacteria had an average pH of 4.8 +/- 0.03 and rapidly merged with lysosomes. Additional experiments using concanamycin A, a specific inhibitor of the vacuolar H+-ATPase, revealed that vacuoles containing live bacteria did not exclude the H+-ATPase. This mode of bacterial survival did not require type III secretion, as no differences were found between wild type and a type III secretion mutant strain. Collectively, our results suggest that intracellular B. cenocepacia cause a delay in the maturation of the phagosome, which may contribute to facilitate bacterial escape from the microbicidal activities of the host cell.
Resumo:
Strains of the Burkholderia cepacia complex have emerged as a serious threat to patients with cystic fibrosis due to their ability to infect the lung and cause, in some patients, a necrotizing pneumonia that is often lethal. It has recently been shown that several strains of the B. cepacia complex can escape intracellular killing by free-living amoebae following phagocytosis. In this work, the ability of two B. cepacia complex strains to resist killing by macrophages was explored. Using fluorescence microscopy, electron microscopy and a modified version of the gentamicin-protection assay, we demonstrate that B. cepacia CEP021 (genomovar VI), and Burkholderia vietnamiensis (previously B. cepacia genomovar V) CEP040 can survive in PU5-1.8 murine macrophages for a period of at least 5 d without significant bacterial replication. Furthermore, bacterial entry into macrophages stimulated production of tumour necrosis factor and primed them to release toxic oxygen radicals following treatment with phorbol myristoyl acetate. These effects were probably caused by bacterial LPS, as they were blocked by polymyxin B. Infected macrophages primed with interferon gamma produced less nitric oxide than interferon-gamma-primed uninfected cells. We propose that the ability of B. cepacia to resist intracellular killing by phagocytic cells may play a role in the pathogenesis of cystic fibrosis lung infection. Our data are consistent with a model where repeated cycles of phagocytosis and cellular activation without bacterial killing may promote a deleterious inflammatory response causing tissue destruction and decay of lung function.
Resumo:
Positron annihilation on many molecules occurs via positron capture into vibrational Feshbach resonances, with annihilation rates often further enhanced by energy transfer to vibrational excitations weakly coupled to the positron continuum. Data presented here uncover another scenario in which the positron couples directly to a quasicontinuum of multimode vibrational states. A model that assumes excitation and escape from a statistically complete ensemble of multimode vibrations is presented that reproduces key features of the data.
Resumo:
We outline our techniques to characterise photospheric granulation as an astrophysical noise source. A four component parameterisation of granulation is developed that can be used to reconstruct stellar line asymmetries and radial velocity shifts due to photospheric convective motions. The four components are made up of absorption line profiles calculated for granules, magnetic intergranular lanes, non-magnetic intergranular lanes, and magnetic bright points at disc centre. These components are constructed by averaging Fe I $6302 \mathrm{\AA}$ magnetically sensitive absorption line profiles output from detailed radiative transport calculations of the solar photosphere. Each of the four categories adopted are based on magnetic field and continuum intensity limits determined from examining three-dimensional magnetohydrodynamic simulations with an average magnetic flux of $200 \mathrm{G}$. Using these four component line profiles we accurately reconstruct granulation profiles, produced from modelling 12 x 12 Mm$^2$ areas on the solar surface, to within $\sim \pm$ 20 cm s$^{-1}$ on a $\sim$ 100 m s$^{-1}$ granulation signal. We have also successfully reconstructed granulation profiles from a $50 \mathrm{G}$ simulation using the parameterised line profiles from the $200 \mathrm{G}$ average magnetic field simulation. This test demonstrates applicability of the characterisation to a range of magnetic stellar activity levels.