869 resultados para Error-correcting codes (Information theory)
Resumo:
In a series of papers, Killworth and Blundell have proposed to study the effects of a background mean flow and topography on Rossby wave propagation by means of a generalized eigenvalue problem formulated in terms of the vertical velocity, obtained from a linearization of the primitive equations of motion. However, it has been known for a number of years that this eigenvalue problem contains an error, which Killworth was prevented from correcting himself by his unfortunate passing and whose correction is therefore taken up in this note. Here, the author shows in the context of quasigeostrophic (QG) theory that the error can ulti- mately be traced to the fact that the eigenvalue problem for the vertical velocity is fundamentally a non- linear one (the eigenvalue appears both in the numerator and denominator), unlike that for the pressure. The reason that this nonlinear term is lacking in the Killworth and Blundell theory comes from neglecting the depth dependence of a depth-dependent term. This nonlinear term is shown on idealized examples to alter significantly the Rossby wave dispersion relation in the high-wavenumber regime but is otherwise irrelevant in the long-wave limit, in which case the eigenvalue problems for the vertical velocity and pressure are both linear. In the general dispersive case, however, one should first solve the generalized eigenvalue problem for the pressure vertical structure and, if needed, diagnose the vertical velocity vertical structure from the latter.
Resumo:
This paper uses appropriately modified information criteria to select models from the GARCH family, which are subsequently used for predicting US dollar exchange rate return volatility. The out of sample forecast accuracy of models chosen in this manner compares favourably on mean absolute error grounds, although less favourably on mean squared error grounds, with those generated by the commonly used GARCH(1, 1) model. An examination of the orders of models selected by the criteria reveals that (1, 1) models are typically selected less than 20% of the time.
Resumo:
Information systems integration aims at the interaction, information exchange and interoperability between information systems, devices and units. Research efforts have contributed in evaluation of information systems integration on the development of evaluation frameworks. To improve the usability and measurability of evaluation, a review of existing evaluation frameworks including their evolution and classifications of different interoperability levels is conducted. The theory of organisational semiotics is used for a comparative analysis of the frameworks and future work.
Resumo:
Low-power medium access control (MAC) protocols used for communication of energy constraint wireless embedded devices do not cope well with situations where transmission channels are highly erroneous. Existing MAC protocols discard corrupted messages which lead to costly retransmissions. To improve transmission performance, it is possible to include an error correction scheme and transmit/receive diversity. It is possible to add redundant information to transmitted packets in order to recover data from corrupted packets. It is also possible to make use of transmit/receive diversity via multiple antennas to improve error resiliency of transmissions. Both schemes may be used in conjunction to further improve the performance. In this study, the authors show how an error correction scheme and transmit/receive diversity can be integrated in low-power MAC protocols. Furthermore, the authors investigate the achievable performance gains of both methods. This is important as both methods have associated costs (processing requirements; additional antennas and power) and for a given communication situation it must be decided which methods should be employed. The authors’ results show that, in many practical situations, error control coding outperforms transmission diversity; however, if very high reliability is required, it is useful to employ both schemes together.
Resumo:
Data assimilation methods which avoid the assumption of Gaussian error statistics are being developed for geoscience applications. We investigate how the relaxation of the Gaussian assumption affects the impact observations have within the assimilation process. The effect of non-Gaussian observation error (described by the likelihood) is compared to previously published work studying the effect of a non-Gaussian prior. The observation impact is measured in three ways: the sensitivity of the analysis to the observations, the mutual information, and the relative entropy. These three measures have all been studied in the case of Gaussian data assimilation and, in this case, have a known analytical form. It is shown that the analysis sensitivity can also be derived analytically when at least one of the prior or likelihood is Gaussian. This derivation shows an interesting asymmetry in the relationship between analysis sensitivity and analysis error covariance when the two different sources of non-Gaussian structure are considered (likelihood vs. prior). This is illustrated for a simple scalar case and used to infer the effect of the non-Gaussian structure on mutual information and relative entropy, which are more natural choices of metric in non-Gaussian data assimilation. It is concluded that approximating non-Gaussian error distributions as Gaussian can give significantly erroneous estimates of observation impact. The degree of the error depends not only on the nature of the non-Gaussian structure, but also on the metric used to measure the observation impact and the source of the non-Gaussian structure.
Resumo:
The financial crisis of 2008 led to new international regulatory controls for the governance, risk and compliance of financial services firms. Information systems play a critical role here as political, functional and social pressures may lead to the deinstitutionalization of existing structures, processes and practices. This research examines how an investment management system is introduced by a leading IT vendor across eight client sites in the post-crisis era. Using institutional theory, it examines changes in working practices occurring at the environmental and organizational levels and the ways in which technological interventions are used to apply disciplinary effects in order to prevent inappropriate behaviors. The results extend the constructs of deinstitutionalization and identify empirical predictors for the deinstitutionalization of compliance and trading practices within financial organizations.
Resumo:
Facility management (FM), from a service oriented approach, addresses the functions and requirements of different services such as energy management, space planning and security service. Different service requires different information to meet the needs arising from the service. Object-based Building Information Modelling (BIM) is limited to support FM services; though this technology is able to generate 3D models that semantically represent facility’s information dynamically over the lifecycle of a building. This paper presents a semiotics-inspired framework to extend BIM from a service-oriented perspective. The extended BIM, which specifies FM services and required information, will be able to express building service information in the right format for the right purposes. The service oriented approach concerns pragmatic aspect of building’s information beyond semantic level. The pragmatics defines and provides context for utilisation of building’s information. Semiotics theory adopted in this paper is to address pragmatic issues of utilisation of BIM for FM services.
Resumo:
Within the literature, many authors have argued that the rapid growth of the field of Information and Communication Technologies for Development (ICT4D) has resulted in an emphasis on the applications rather than on theory. However, it is clear that it is not theories, rather the integration of theory and practice, that is often lacking. To address this gap, the authors begin by exploring some of the popular theoretical approaches to ICT4D with a view to identifying those theories relevant to shared impacts: development, delivery and communication. To unify practice and theory, we offer a framework to directly assess the impact of ICT4D on development.
Resumo:
Biological models of an apoptotic process are studied using models describing a system of differential equations derived from reaction kinetics information. The mathematical model is re-formulated in a state-space robust control theory framework where parametric and dynamic uncertainty can be modelled to account for variations naturally occurring in biological processes. We propose to handle the nonlinearities using neural networks.
Resumo:
Stochastic methods are a crucial area in contemporary climate research and are increasingly being used in comprehensive weather and climate prediction models as well as reduced order climate models. Stochastic methods are used as subgrid-scale parameterizations (SSPs) as well as for model error representation, uncertainty quantification, data assimilation, and ensemble prediction. The need to use stochastic approaches in weather and climate models arises because we still cannot resolve all necessary processes and scales in comprehensive numerical weather and climate prediction models. In many practical applications one is mainly interested in the largest and potentially predictable scales and not necessarily in the small and fast scales. For instance, reduced order models can simulate and predict large-scale modes. Statistical mechanics and dynamical systems theory suggest that in reduced order models the impact of unresolved degrees of freedom can be represented by suitable combinations of deterministic and stochastic components and non-Markovian (memory) terms. Stochastic approaches in numerical weather and climate prediction models also lead to the reduction of model biases. Hence, there is a clear need for systematic stochastic approaches in weather and climate modeling. In this review, we present evidence for stochastic effects in laboratory experiments. Then we provide an overview of stochastic climate theory from an applied mathematics perspective. We also survey the current use of stochastic methods in comprehensive weather and climate prediction models and show that stochastic parameterizations have the potential to remedy many of the current biases in these comprehensive models.
Resumo:
In multiple-input multiple-output (MIMO) radar systems, the transmitters emit orthogonal waveforms to increase the spatial resolution. New frequency hopping (FH) codes based on chaotic sequences are proposed. The chaotic sequences have the characteristics of good encryption, anti-jamming properties and anti-intercept capabilities. The main idea of chaotic FH is based on queuing theory. According to the sensitivity to initial condition, these sequences can achieve good Hamming auto-correlation while also preserving good average correlation. Simulation results show that the proposed FH signals can achieve lower autocorrelation side lobe level and peak cross-correlation level with the increasing of iterations. Compared to the LFM signals, this sequence has higher range-doppler resolution.
Resumo:
Representation error arises from the inability of the forecast model to accurately simulate the climatology of the truth. We present a rigorous framework for understanding this kind of error of representation. This framework shows that the lack of an inverse in the relationship between the true climatology (true attractor) and the forecast climatology (forecast attractor) leads to the error of representation. A new gain matrix for the data assimilation problem is derived that illustrates the proper approaches one may take to perform Bayesian data assimilation when the observations are of states on one attractor but the forecast model resides on another. This new data assimilation algorithm is the optimal scheme for the situation where the distributions on the true attractor and the forecast attractors are separately Gaussian and there exists a linear map between them. The results of this theory are illustrated in a simple Gaussian multivariate model.
Resumo:
This paper examines the determinants of cross-platform arbitrage profits. We develop a structural model that enables us to decompose the likelihood of an arbitrage opportunity into three distinct factors: the fixed cost to trade the opportunity, the level at which one of the platforms delays a price update and the impact of the order flow on the quoted prices (inventory and asymmetric information effects). We then investigate the predictions from the theoretical model for the European Bond market with the estimation of a probit model. Our main finding is that the results found in the empirical part corroborate strongly the predictions from the structural model. The event of a cross market arbitrage opportunity has a certain degree of predictability where an optimal ex ante scenario is represented by a low level of spreads on both platforms, a time of the day close to the end of trading hours and a high volume of trade.
Resumo:
Accurate and reliable rain rate estimates are important for various hydrometeorological applications. Consequently, rain sensors of different types have been deployed in many regions. In this work, measurements from different instruments, namely, rain gauge, weather radar, and microwave link, are combined for the first time to estimate with greater accuracy the spatial distribution and intensity of rainfall. The objective is to retrieve the rain rate that is consistent with all these measurements while incorporating the uncertainty associated with the different sources of information. Assuming the problem is not strongly nonlinear, a variational approach is implemented and the Gauss–Newton method is used to minimize the cost function containing proper error estimates from all sensors. Furthermore, the method can be flexibly adapted to additional data sources. The proposed approach is tested using data from 14 rain gauges and 14 operational microwave links located in the Zürich area (Switzerland) to correct the prior rain rate provided by the operational radar rain product from the Swiss meteorological service (MeteoSwiss). A cross-validation approach demonstrates the improvement of rain rate estimates when assimilating rain gauge and microwave link information.
Resumo:
Seamless phase II/III clinical trials in which an experimental treatment is selected at an interim analysis have been the focus of much recent research interest. Many of the methods proposed are based on the group sequential approach. This paper considers designs of this type in which the treatment selection can be based on short-term endpoint information for more patients than have primary endpoint data available. We show that in such a case, the familywise type I error rate may be inflated if previously proposed group sequential methods are used and the treatment selection rule is not specified in advance. A method is proposed to avoid this inflation by considering the treatment selection that maximises the conditional error given the data available at the interim analysis. A simulation study is reported that illustrates the type I error rate inflation and compares the power of the new approach with two other methods: a combination testing approach and a group sequential method that does not use the short-term endpoint data, both of which also strongly control the type I error rate. The new method is also illustrated through application to a study in Alzheimer's disease. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.