986 resultados para Equity raw-score matrix (ERSM)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, multi-hole cooling is studied for an oxide/oxide ceramic specimen with normal injection holes and for a SiC/SiC ceramic specimen with oblique injection holes. A special purpose heat transfer tunnel was designed and built, which can provide a wide range of Reynolds numbers (10(5)similar to 10(7)) and a large temperature ratio of the primary flow to the coolant (up to 2.5). Cooling effectiveness determined by the measured surface temperature for the two types of ceramic specimens is investigated. It is found that the multi-hole cooling system for both specimens has a high cooling efficiency and it is higher for the SiC/SiC specimen than for the oxide/oxide specimen. Effects on the cooling effectiveness of parameters including blowing ratio, Reynolds number and temperature ratio, are studied. In addition, profiles of the mean velocity and temperature above the cooling surface are measured to provide further understanding of the cooling process. Duplication of the key parameters for multi-hole cooling, for a representative combustor flow condition (without radiation effects), is achieved with parameter scaling and the results show the high efficiency of multi-hole cooling for the oblique hole, SiC/SiC specimen. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zr-based bulk metallic glass matrix composites with the composition of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.(5) were synthesized by the copper-mould suction casting and the Bridgman solidification. The composite, containing a well-developed flowery beta-Zr dendritic phase, was obtained by the Bridgman solidification with the withdrawal velocity of 0.8 mm/s and the temperature gradient of 45 K/mm, and the ultimate strength of 2050 MPa and fracture plastic strain of 14.6% of the composite were achieved, which was mainly interpreted by the homogeneous dispersion of bcc beta-Zr phase in the glass matrix. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within natural resource management, there is increasing criticism of the traditional model of top-down management as a method of governance, as researchers and managers alike have recognized that resources can frequently be better managed when stakeholders are directly involved in management. As a result, in recent years the concept of co-management of natural resources, in which management responsibilities are shared between the government and stakeholders, has become increasingly popular, both in the academic literature and in practice. However, while co-management has significant potential as a successful management tool, the issue of equity in co-management has rarely been addressed. It is necessary to understand the differential impacts on stakeholders of co-management processes and the degree to which diverse stakeholders are represented within co-management. Understanding the interests of various stakeholders can be a way to more effectively address the distributional and social impacts of coastal policies, which can in turn increase compliance with management measures and lead to more sustainable resource management regimes. This research seeks to take a closer look at the concepts of co-management and participation through a number of case studies of marine protected areas (MPAs) in the Caribbean. (PDF contains 4 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal processing techniques play important roles in the design of digital communication systems. These include information manipulation, transmitter signal processing, channel estimation, channel equalization and receiver signal processing. By interacting with communication theory and system implementing technologies, signal processing specialists develop efficient schemes for various communication problems by wisely exploiting various mathematical tools such as analysis, probability theory, matrix theory, optimization theory, and many others. In recent years, researchers realized that multiple-input multiple-output (MIMO) channel models are applicable to a wide range of different physical communications channels. Using the elegant matrix-vector notations, many MIMO transceiver (including the precoder and equalizer) design problems can be solved by matrix and optimization theory. Furthermore, the researchers showed that the majorization theory and matrix decompositions, such as singular value decomposition (SVD), geometric mean decomposition (GMD) and generalized triangular decomposition (GTD), provide unified frameworks for solving many of the point-to-point MIMO transceiver design problems.

In this thesis, we consider the transceiver design problems for linear time invariant (LTI) flat MIMO channels, linear time-varying narrowband MIMO channels, flat MIMO broadcast channels, and doubly selective scalar channels. Additionally, the channel estimation problem is also considered. The main contributions of this dissertation are the development of new matrix decompositions, and the uses of the matrix decompositions and majorization theory toward the practical transmit-receive scheme designs for transceiver optimization problems. Elegant solutions are obtained, novel transceiver structures are developed, ingenious algorithms are proposed, and performance analyses are derived.

The first part of the thesis focuses on transceiver design with LTI flat MIMO channels. We propose a novel matrix decomposition which decomposes a complex matrix as a product of several sets of semi-unitary matrices and upper triangular matrices in an iterative manner. The complexity of the new decomposition, generalized geometric mean decomposition (GGMD), is always less than or equal to that of geometric mean decomposition (GMD). The optimal GGMD parameters which yield the minimal complexity are derived. Based on the channel state information (CSI) at both the transmitter (CSIT) and receiver (CSIR), GGMD is used to design a butterfly structured decision feedback equalizer (DFE) MIMO transceiver which achieves the minimum average mean square error (MSE) under the total transmit power constraint. A novel iterative receiving detection algorithm for the specific receiver is also proposed. For the application to cyclic prefix (CP) systems in which the SVD of the equivalent channel matrix can be easily computed, the proposed GGMD transceiver has K/log_2(K) times complexity advantage over the GMD transceiver, where K is the number of data symbols per data block and is a power of 2. The performance analysis shows that the GGMD DFE transceiver can convert a MIMO channel into a set of parallel subchannels with the same bias and signal to interference plus noise ratios (SINRs). Hence, the average bit rate error (BER) is automatically minimized without the need for bit allocation. Moreover, the proposed transceiver can achieve the channel capacity simply by applying independent scalar Gaussian codes of the same rate at subchannels.

In the second part of the thesis, we focus on MIMO transceiver design for slowly time-varying MIMO channels with zero-forcing or MMSE criterion. Even though the GGMD/GMD DFE transceivers work for slowly time-varying MIMO channels by exploiting the instantaneous CSI at both ends, their performance is by no means optimal since the temporal diversity of the time-varying channels is not exploited. Based on the GTD, we develop space-time GTD (ST-GTD) for the decomposition of linear time-varying flat MIMO channels. Under the assumption that CSIT, CSIR and channel prediction are available, by using the proposed ST-GTD, we develop space-time geometric mean decomposition (ST-GMD) DFE transceivers under the zero-forcing or MMSE criterion. Under perfect channel prediction, the new system minimizes both the average MSE at the detector in each space-time (ST) block (which consists of several coherence blocks), and the average per ST-block BER in the moderate high SNR region. Moreover, the ST-GMD DFE transceiver designed under an MMSE criterion maximizes Gaussian mutual information over the equivalent channel seen by each ST-block. In general, the newly proposed transceivers perform better than the GGMD-based systems since the super-imposed temporal precoder is able to exploit the temporal diversity of time-varying channels. For practical applications, a novel ST-GTD based system which does not require channel prediction but shares the same asymptotic BER performance with the ST-GMD DFE transceiver is also proposed.

The third part of the thesis considers two quality of service (QoS) transceiver design problems for flat MIMO broadcast channels. The first one is the power minimization problem (min-power) with a total bitrate constraint and per-stream BER constraints. The second problem is the rate maximization problem (max-rate) with a total transmit power constraint and per-stream BER constraints. Exploiting a particular class of joint triangularization (JT), we are able to jointly optimize the bit allocation and the broadcast DFE transceiver for the min-power and max-rate problems. The resulting optimal designs are called the minimum power JT broadcast DFE transceiver (MPJT) and maximum rate JT broadcast DFE transceiver (MRJT), respectively. In addition to the optimal designs, two suboptimal designs based on QR decomposition are proposed. They are realizable for arbitrary number of users.

Finally, we investigate the design of a discrete Fourier transform (DFT) modulated filterbank transceiver (DFT-FBT) with LTV scalar channels. For both cases with known LTV channels and unknown wide sense stationary uncorrelated scattering (WSSUS) statistical channels, we show how to optimize the transmitting and receiving prototypes of a DFT-FBT such that the SINR at the receiver is maximized. Also, a novel pilot-aided subspace channel estimation algorithm is proposed for the orthogonal frequency division multiplexing (OFDM) systems with quasi-stationary multi-path Rayleigh fading channels. Using the concept of a difference co-array, the new technique can construct M^2 co-pilots from M physical pilot tones with alternating pilot placement. Subspace methods, such as MUSIC and ESPRIT, can be used to estimate the multipath delays and the number of identifiable paths is up to O(M^2), theoretically. With the delay information, a MMSE estimator for frequency response is derived. It is shown through simulations that the proposed method outperforms the conventional subspace channel estimator when the number of multipaths is greater than or equal to the number of physical pilots minus one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A central objective in signal processing is to infer meaningful information from a set of measurements or data. While most signal models have an overdetermined structure (the number of unknowns less than the number of equations), traditionally very few statistical estimation problems have considered a data model which is underdetermined (number of unknowns more than the number of equations). However, in recent times, an explosion of theoretical and computational methods have been developed primarily to study underdetermined systems by imposing sparsity on the unknown variables. This is motivated by the observation that inspite of the huge volume of data that arises in sensor networks, genomics, imaging, particle physics, web search etc., their information content is often much smaller compared to the number of raw measurements. This has given rise to the possibility of reducing the number of measurements by down sampling the data, which automatically gives rise to underdetermined systems.

In this thesis, we provide new directions for estimation in an underdetermined system, both for a class of parameter estimation problems and also for the problem of sparse recovery in compressive sensing. There are two main contributions of the thesis: design of new sampling and statistical estimation algorithms for array processing, and development of improved guarantees for sparse reconstruction by introducing a statistical framework to the recovery problem.

We consider underdetermined observation models in array processing where the number of unknown sources simultaneously received by the array can be considerably larger than the number of physical sensors. We study new sparse spatial sampling schemes (array geometries) as well as propose new recovery algorithms that can exploit priors on the unknown signals and unambiguously identify all the sources. The proposed sampling structure is generic enough to be extended to multiple dimensions as well as to exploit different kinds of priors in the model such as correlation, higher order moments, etc.

Recognizing the role of correlation priors and suitable sampling schemes for underdetermined estimation in array processing, we introduce a correlation aware framework for recovering sparse support in compressive sensing. We show that it is possible to strictly increase the size of the recoverable sparse support using this framework provided the measurement matrix is suitably designed. The proposed nested and coprime arrays are shown to be appropriate candidates in this regard. We also provide new guarantees for convex and greedy formulations of the support recovery problem and demonstrate that it is possible to strictly improve upon existing guarantees.

This new paradigm of underdetermined estimation that explicitly establishes the fundamental interplay between sampling, statistical priors and the underlying sparsity, leads to exciting future research directions in a variety of application areas, and also gives rise to new questions that can lead to stand-alone theoretical results in their own right.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation studies long-term behavior of random Riccati recursions and mathematical epidemic model. Riccati recursions are derived from Kalman filtering. The error covariance matrix of Kalman filtering satisfies Riccati recursions. Convergence condition of time-invariant Riccati recursions are well-studied by researchers. We focus on time-varying case, and assume that regressor matrix is random and identical and independently distributed according to given distribution whose probability distribution function is continuous, supported on whole space, and decaying faster than any polynomial. We study the geometric convergence of the probability distribution. We also study the global dynamics of the epidemic spread over complex networks for various models. For instance, in the discrete-time Markov chain model, each node is either healthy or infected at any given time. In this setting, the number of the state increases exponentially as the size of the network increases. The Markov chain has a unique stationary distribution where all the nodes are healthy with probability 1. Since the probability distribution of Markov chain defined on finite state converges to the stationary distribution, this Markov chain model concludes that epidemic disease dies out after long enough time. To analyze the Markov chain model, we study nonlinear epidemic model whose state at any given time is the vector obtained from the marginal probability of infection of each node in the network at that time. Convergence to the origin in the epidemic map implies the extinction of epidemics. The nonlinear model is upper-bounded by linearizing the model at the origin. As a result, the origin is the globally stable unique fixed point of the nonlinear model if the linear upper bound is stable. The nonlinear model has a second fixed point when the linear upper bound is unstable. We work on stability analysis of the second fixed point for both discrete-time and continuous-time models. Returning back to the Markov chain model, we claim that the stability of linear upper bound for nonlinear model is strongly related with the extinction time of the Markov chain. We show that stable linear upper bound is sufficient condition of fast extinction and the probability of survival is bounded by nonlinear epidemic map.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most space applications require deployable structures due to the limiting size of current launch vehicles. Specifically, payloads in nanosatellites such as CubeSats require very high compaction ratios due to the very limited space available in this typo of platform. Strain-energy-storing deployable structures can be suitable for these applications, but the curvature to which these structures can be folded is limited to the elastic range. Thanks to fiber microbuckling, high-strain composite materials can be folded into much higher curvatures without showing significant damage, which makes them suitable for very high compaction deployable structure applications. However, in applications that require carrying loads in compression, fiber microbuckling also dominates the strength of the material. A good understanding of the strength in compression of high-strain composites is then needed to determine how suitable they are for this type of application.

The goal of this thesis is to investigate, experimentally and numerically, the microbuckling in compression of high-strain composites. Particularly, the behavior in compression of unidirectional carbon fiber reinforced silicone rods (CFRS) is studied. Experimental testing of the compression failure of CFRS rods showed a higher strength in compression than the strength estimated by analytical models, which is unusual in standard polymer composites. This effect, first discovered in the present research, was attributed to the variation in random carbon fiber angles respect to the nominal direction. This is an important effect, as it implies that microbuckling strength might be increased by controlling the fiber angles. With a higher microbuckling strength, high-strain materials could carry loads in compression without reaching microbuckling and therefore be suitable for several space applications.

A finite element model was developed to predict the homogenized stiffness of the CFRS, and the homogenization results were used in another finite element model that simulated a homogenized rod under axial compression. A statistical representation of the fiber angles was implemented in the model. The presence of fiber angles increased the longitudinal shear stiffness of the material, resulting in a higher strength in compression. The simulations showed a large increase of the strength in compression for lower values of the standard deviation of the fiber angle, and a slight decrease of strength in compression for lower values of the mean fiber angle. The strength observed in the experiments was achieved with the minimum local angle standard deviation observed in the CFRS rods, whereas the shear stiffness measured in torsion tests was achieved with the overall fiber angle distribution observed in the CFRS rods.

High strain composites exhibit good bending capabilities, but they tend to be soft out-of-plane. To achieve a higher out-of-plane stiffness, the concept of dual-matrix composites is introduced. Dual-matrix composites are foldable composites which are soft in the crease regions and stiff elsewhere. Previous attempts to fabricate continuous dual-matrix fiber composite shells had limited performance due to excessive resin flow and matrix mixing. An alternative method, presented in this thesis uses UV-cure silicone and fiberglass to avoid these problems. Preliminary experiments on the effect of folding on the out-of-plane stiffness are presented. An application to a conical log-periodic antenna for CubeSats is proposed, using origami-inspired stowing schemes, that allow a conical dual-matrix composite shell to reach very high compaction ratios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of the first member of a new class of Dewar benzenes has been achieved. The synthesis of 2,3- dimethylbicyclo[2.2.0]hexa-2,5-diene-1, 4-dicarboxylic acid and its anhydride are described. Dibromomaleic anhydride and dichloroethylene were found to add efficiently in a photochemical [2+2] cycloaddition to produce 1,2-dibromo- 3,4-dichlorocyclobutane-1,2-dicarboxylic acid. Removal of the bromines with tin/copper couple yielded dichloro- cyclobutenes which added to 2-butyne under photochemical conditions to yield 5,6-dichloro-2,3-dimethylbicyclo [2.2.0] hex-2-ene dicarboxylic acids. One of the three possible isomers yielded a stable anhydride which could be dechlorinated using triphenyltin radicals generated by the photolysis of hexaphenylditin.

Photolysis of argon matrix isolated 2,3-dimethylbicyclo [2.2.0]hexa-2, 5-diene-1,4-dicarboxylic acid anhydride produced traces whose strongest bands in the infrared were at 3350 and 600 cm^(-1). This suggested the formation of terminal acetylenes. The spectra of argon matrix isolated E- and Z- 3,4-dimethylhexa-1,5-diyne-3-ene and cis-and trans-octa- 2,6-diyne-4-ene were compared with the spectrum of the photolysis products. Possibly all four diethynylethylenes were present in the anhydride photolysis products. Gas chromatograph-mass spectral analysis of the volatiles from the anhydride photolysis again suggested, but did not confirm, the presence of the diethynylethylenes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este estudo tem como objeto a carga de trabalho de enfermeiros que trabalham em unidades de cuidados semi-intensivos. Seu objetivo geral foi identificar e analisar a percepção dos enfermeiros de uma unidade semi-intensiva acerca do instrumento Nursing Activities Score - NAS, tendo como foco o conceito de carga de trabalho. Os objetivos específicos foram: identificar domínios do NAS considerados pelos enfermeiros como capazes de avaliar a carga de trabalho; identificar os itens que os enfermeiros consideram relevantes e manteriam no instrumento, os itens que excluiriam e os que acrescentariam; identificar itens que os enfermeiros consideram subdimensionados, para os quais aumentariam a pontuação, os superdimensionados, para os quais diminuiriam a pontuação; e, ao final, discutir implicações dessa avaliação para a organização do trabalho e seus impactos na saúde do trabalhador de enfermagem. Estudo de abordagem quantitativa do tipo descritivo exploratória, com breve aporte qualitativo, utilizando a triangulação metodológica. O local de estudo foi uma unidade de média complexidade com 35 leitos em um hospital privado do Rio de Janeiro. Participaram do estudo 28 enfermeiros e os dados foram coletados por meio de um questionário com perguntas fechadas e abertas no período de abril a maio de 2008. O tratamento dos dados foi realizado com apoio do software Excel, utilizando estatística descritiva. O material qualitativo foi organizado em categorias, usando elementos da Análise de Conteúdo Temática. Entre os domínios, verificou-se que os enfermeiros consideram o que mais avalia a carga real de trabalho o Suporte Ventilatório, com 89%, e o domínio que não avalia a carga de trabalho foi o Suporte Neurológico, com 25%. Os três domínios mais citados para serem acrescidos de atividades foram o Suporte Renal, com 25%, seguido Intervenção Especificas, com 21%, e Suporte Metabólico, respectivamente. Quanto à exclusão de atividades, só dois domínios foram mencionados: Suporte Ventilatório, com 25%, e Atividade Básica, com 21%. Os enfermeiros acham que 69% da pontuação era adequada aos itens e 31% acreditam não estar adequada. No grupo, 27% aumentariam a pontuação em alguns itens e 4% diminuiriam a pontuação. Sobre a mensuração da carga de trabalho, acreditam que essa colabora no processo de trabalho, 79%, e 57% acham que mensurar a carga de trabalho através do NAS pode auxiliar na preservação de sua saúde. Concluímos que esse instrumento mensura a carga de trabalho na opinião dos enfermeiros, mas precisa ser adaptado à realidade da unidade onde está sendo aplicada. Além disso, os enfermeiros alteraram mais os itens relacionados à carga física sem identificar a carga psíquica de trabalho como relevante, evidenciando que o trabalho de enfermagem precisa ser mais bem conhecido pelos enfermeiros no que se refere às dimensões de impacto na sua saúde.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A excreção urinária de glicosaminoglicanos (GAG) está alterada em várias patologias do trato urinário; o padrão de excreção pode estar associado com o estado da doença. A excreção urinária de GAG em crianças com bexiga neurogênica (BN) secundária a mielomeningocele (MMC) pode também estar alterada, mas até a presente data não há detalhamento epidemiológico dos pacientes e não se correlacionou o padrão de excreção com grau de disfunção vesical. Analisamos a excreção urinária de um grupo bem definido de crianças com MMC e correlacionamos os resultados com escore cistométrico. As amostras de urina de 17 pacientes com MMC, 10 meninos e 7 meninas (média de idade DP de 4,6 2,9 anos) foram obtidas durante o exame cistométrico. As amostras do grupo controle foram obtidas de 18 crianças normais, 13 meninos e 5 meninas (6,9 2,2 anos). Todas as crianças não estavam com infecção urinária, tinham função renal normal e não estavam sob tratamento farmacológico. A quantificação do GAG urinário total foi expressa em μg de ácido hexurônico / mg de creatinina e a proporção dos diferentes tipos de GAGs sulfatados foi obtida por eletroforese em gel de agarose. A avaliação cistométrica foi realizada utilizando aparelho de urodinâmica Dynapack modelo MPX816 (Dynamed, São Paulo, Brasil), a partir da qual o escore cistométrico foi calculado de acordo com procedimento recente publicado. [14]. Não observamos diferença significativa na excreção urinária de GAG total entre meninos e meninas tanto no grupo com MMC ( 0,913 0,528 vs 0,867 0,434, p>0,05) como no grupo controle (0,546 0,240 vs 0,699 0,296, p>0,05). Os resultados mostraram também que a excreção de GAG urinário não se correlacionou com a idade tanto no grupo com MMC ( r = -0,28, p> 0,05) como no grupo controle (r = -0,40, p> 0,05). Entretanto, a comparação dos dois grupos mostrou que o grupo com MMC excretava 52% a mais de GAG total que o grupo controle (0,894 0,477 vs 0,588 0,257, p <0,04). Nesses pacientes a excreção de GAG total não se correlacionou com a complacência vesical isoladamente (r = -0,18, p> 0,05) mas foi significativa e negativamente correlacionada ao escore cistométrico (r= -0,56, p<0,05). Em média, os pacientes com piores escores (<9) excretaram 81% a mais de GAG que os pacientes com melhor escore (>9) (1,157 0,467 vs 0,639 0,133, p<0,04). O sulfato de condroitin foi o GAG sulfatado predominante nos grupos neurogênico e controles (92,5 7,6% vs 96,4 4,8%, respectivamente, p> 0,05), enquanto o sulfato do heparan estava presente em quantidades marcadamente menores; o dermatam sulfato não foi detectado. A excreção urinária de GAG em pacientes com MMC é significativamente maior que a excreção das crianças normais e os altos valores encontrados estão correlacionados a um maior compromentimento da função vesical. Evidências em modelos animais com MMC induzida sugerem que alterações no detrusor estão associadas a um elevado turnover da matriz extra celular (MEC) vesical, o que pode explicar a elevada excreção de GAG nos pacientes com MMC. Além disso, esses resultados indicam que a excreção urinária de GAG pode ser usada como fator adjuvante para a caracterização da disfunção vesical em pacientes com MMC.