921 resultados para Entropy of Tsallis
Resumo:
Medical fields requires fast, simple and noninvasive methods of diagnostic techniques. Several methods are available and possible because of the growth of technology that provides the necessary means of collecting and processing signals. The present thesis details the work done in the field of voice signals. New methods of analysis have been developed to understand the complexity of voice signals, such as nonlinear dynamics aiming at the exploration of voice signals dynamic nature. The purpose of this thesis is to characterize complexities of pathological voice from healthy signals and to differentiate stuttering signals from healthy signals. Efficiency of various acoustic as well as non linear time series methods are analysed. Three groups of samples are used, one from healthy individuals, subjects with vocal pathologies and stuttering subjects. Individual vowels/ and a continuous speech data for the utterance of the sentence "iruvarum changatimaranu" the meaning in English is "Both are good friends" from Malayalam language are recorded using a microphone . The recorded audio are converted to digital signals and are subjected to analysis.Acoustic perturbation methods like fundamental frequency (FO), jitter, shimmer, Zero Crossing Rate(ZCR) were carried out and non linear measures like maximum lyapunov exponent(Lamda max), correlation dimension (D2), Kolmogorov exponent(K2), and a new measure of entropy viz., Permutation entropy (PE) are evaluated for all three groups of the subjects. Permutation Entropy is a nonlinear complexity measure which can efficiently distinguish regular and complex nature of any signal and extract information about the change in dynamics of the process by indicating sudden change in its value. The results shows that nonlinear dynamical methods seem to be a suitable technique for voice signal analysis, due to the chaotic component of the human voice. Permutation entropy is well suited due to its sensitivity to uncertainties, since the pathologies are characterized by an increase in the signal complexity and unpredictability. Pathological groups have higher entropy values compared to the normal group. The stuttering signals have lower entropy values compared to the normal signals.PE is effective in charaterising the level of improvement after two weeks of speech therapy in the case of stuttering subjects. PE is also effective in characterizing the dynamical difference between healthy and pathological subjects. This suggests that PE can improve and complement the recent voice analysis methods available for clinicians. The work establishes the application of the simple, inexpensive and fast algorithm of PE for diagnosis in vocal disorders and stuttering subjects.
Resumo:
A mathematical analysis of an electroencephalogram of a human Brain during an epileptic seizure shows that the K2 entropy decreases as compared to a clinically normal brain while the dimension of the attractor does not show significant deviation.
Resumo:
In this thesis, the applications of the recurrence quantification analysis in metal cutting operation in a lathe, with specific objective to detect tool wear and chatter, are presented.This study is based on the discovery that process dynamics in a lathe is low dimensional chaotic. It implies that the machine dynamics is controllable using principles of chaos theory. This understanding is to revolutionize the feature extraction methodologies used in condition monitoring systems as conventional linear methods or models are incapable of capturing the critical and strange behaviors associated with the metal cutting process.As sensor based approaches provide an automated and cost effective way to monitor and control, an efficient feature extraction methodology based on nonlinear time series analysis is much more demanding. The task here is more complex when the information has to be deduced solely from sensor signals since traditional methods do not address the issue of how to treat noise present in real-world processes and its non-stationarity. In an effort to get over these two issues to the maximum possible, this thesis adopts the recurrence quantification analysis methodology in the study since this feature extraction technique is found to be robust against noise and stationarity in the signals.The work consists of two different sets of experiments in a lathe; set-I and set-2. The experiment, set-I, study the influence of tool wear on the RQA variables whereas the set-2 is carried out to identify the sensitive RQA variables to machine tool chatter followed by its validation in actual cutting. To obtain the bounds of the spectrum of the significant RQA variable values, in set-i, a fresh tool and a worn tool are used for cutting. The first part of the set-2 experiments uses a stepped shaft in order to create chatter at a known location. And the second part uses a conical section having a uniform taper along the axis for creating chatter to onset at some distance from the smaller end by gradually increasing the depth of cut while keeping the spindle speed and feed rate constant.The study concludes by revealing the dependence of certain RQA variables; percent determinism, percent recurrence and entropy, to tool wear and chatter unambiguously. The performances of the results establish this methodology to be viable for detection of tool wear and chatter in metal cutting operation in a lathe. The key reason is that the dynamics of the system under study have been nonlinear and the recurrence quantification analysis can characterize them adequately.This work establishes that principles and practice of machining can be considerably benefited and advanced from using nonlinear dynamics and chaos theory.
Resumo:
Measurements of the entropy change at the martensitic transition of two composition-related sets of Cu-Al-Mn shape-memory alloys are reported. It is found that most of the entropy change has a vibrational origin, and depends only on the particular close-packed structure of the low-temperature phase. Using data from the literature for other Cu-based alloys, this result is shown to be general. In addition, it is shown that the martensitic structure changes from 18R to 2H when the ratio of conduction electrons per atom reaches the same value as the eutectoid point in the equilibrium phase diagram. This finding indicates that the structure of the metastable low-temperature phase is reminiscent of the equilibrium structure.
Resumo:
Natural systems are inherently non linear. Recurrent behaviours are typical of natural systems. Recurrence is a fundamental property of non linear dynamical systems which can be exploited to characterize the system behaviour effectively. Cross recurrence based analysis of sensor signals from non linear dynamical system is presented in this thesis. The mutual dependency among relatively independent components of a system is referred as coupling. The analysis is done for a mechanically coupled system specifically designed for conducting experiment. Further, cross recurrence method is extended to the actual machining process in a lathe to characterize the chatter during turning. The result is verified by permutation entropy method. Conventional linear methods or models are incapable of capturing the critical and strange behaviours associated with the dynamical process. Hence any effective feature extraction methodologies should invariably gather information thorough nonlinear time series analysis. The sensor signals from the dynamical system normally contain noise and non stationarity. In an effort to get over these two issues to the maximum possible extent, this work adopts the cross recurrence quantification analysis (CRQA) methodology since it is found to be robust against noise and stationarity in the signals. The study reveals that the CRQA is capable of characterizing even weak coupling among system signals. It also divulges the dependence of certain CRQA variables like percent determinism, percent recurrence and entropy to chatter unambiguously. The surrogate data test shows that the results obtained by CRQA are the true properties of the temporal evolution of the dynamics and contain a degree of deterministic structure. The results are verified using permutation entropy (PE) to detect the onset of chatter from the time series. The present study ascertains that this CRP based methodology is capable of recognizing the transition from regular cutting to the chatter cutting irrespective of the machining parameters or work piece material. The results establish this methodology to be feasible for detection of chatter in metal cutting operation in a lathe.
Resumo:
Isothermal magnetization curves up to 23 T have been measured in Gd5Si1.8Ge2.2. We show that the values of the entropy change at the first-order magnetostructural transition, obtained from the Clausius-Clapeyron equation and the Maxwell relation, are coincident, provided the Maxwell relation is evaluated only within the transition region and the maximum applied field is high enough to complete the transition. These values are also in agreement with the entropy change obtained from differential scanning calorimetry. We also show that a simple phenomenological model based on the temperature and field dependence of the magnetization accounts for these results.
Resumo:
The magnetocaloric effect that originates from the martensitic transition in the ferromagnetic Ni-Mn-Ga shape-memory alloy is studied. We show that this effect is controlled by the magnetostructural coupling at both the martensitic variant and magnetic domain length scales. A large entropy change induced by moderate magnetic fields is obtained for alloys in which the magnetic moment of the two structural phases is not very different. We also show that this entropy change is not associated with the entropy difference between the martensitic and the parent phase arising from the change in the crystallographic structure which has been found to be independent of the magnetic field within this range of fields.
Resumo:
We propose a short-range generalization of the p-spin interaction spin-glass model. The model is well suited to test the idea that an entropy collapse is at the bottom line of the dynamical singularity encountered in structural glasses. The model is studied in three dimensions through Monte Carlo simulations, which put in evidence fragile glass behavior with stretched exponential relaxation and super-Arrhenius behavior of the relaxation time. Our data are in favor of a Vogel-Fulcher behavior of the relaxation time, related to an entropy collapse at the Kauzmann temperature. We, however, encounter difficulties analogous to those found in experimental systems when extrapolating thermodynamical data at low temperatures. We study the spin-glass susceptibility, investigating the behavior of the correlation length in the system. We find that the increase of the relaxation time is accompanied by a very slow growth of the correlation length. We discuss the scaling properties of off-equilibrium dynamics in the glassy regime, finding qualitative agreement with the mean-field theory.
Resumo:
Quantile functions are efficient and equivalent alternatives to distribution functions in modeling and analysis of statistical data (see Gilchrist, 2000; Nair and Sankaran, 2009). Motivated by this, in the present paper, we introduce a quantile based Shannon entropy function. We also introduce residual entropy function in the quantile setup and study its properties. Unlike the residual entropy function due to Ebrahimi (1996), the residual quantile entropy function determines the quantile density function uniquely through a simple relationship. The measure is used to define two nonparametric classes of distributions
Resumo:
Recently, cumulative residual entropy (CRE) has been found to be a new measure of information that parallels Shannon’s entropy (see Rao et al. [Cumulative residual entropy: A new measure of information, IEEE Trans. Inform. Theory. 50(6) (2004), pp. 1220–1228] and Asadi and Zohrevand [On the dynamic cumulative residual entropy, J. Stat. Plann. Inference 137 (2007), pp. 1931–1941]). Motivated by this finding, in this paper, we introduce a generalized measure of it, namely cumulative residual Renyi’s entropy, and study its properties.We also examine it in relation to some applied problems such as weighted and equilibrium models. Finally, we extend this measure into the bivariate set-up and prove certain characterizing relationships to identify different bivariate lifetime models
Resumo:
Di Crescenzo and Longobardi (2002) introduced a measure of uncertainty in past lifetime distributions and studied its relationship with residual entropy function. In the present paper, we introduce a quantile version of the entropy function in past lifetime and study its properties. Unlike the measure of uncertainty given in Di Crescenzo and Longobardi (2002) the proposed measure uniquely determines the underlying probability distribution. The measure is used to study two nonparametric classes of distributions. We prove characterizations theorems for some well known quantile lifetime distributions
Resumo:
In the present paper, we introduce a quantile based Rényi’s entropy function and its residual version. We study certain properties and applications of the measure. Unlike the residual Rényi’s entropy function, the quantile version uniquely determines the distribution
Resumo:
Low grade and High grade Gliomas are tumors that originate in the glial cells. The main challenge in brain tumor diagnosis is whether a tumor is benign or malignant, primary or metastatic and low or high grade. Based on the patient's MRI, a radiologist could not differentiate whether it is a low grade Glioma or a high grade Glioma. Because both of these are almost visually similar, autopsy confirms the diagnosis of low grade with high-grade and infiltrative features. In this paper, textural description of Grade I and grade III Glioma are extracted using First order statistics and Gray Level Co-occurance Matrix Method (GLCM). Textural features are extracted from 16X16 sub image of the segmented Region of Interest(ROI) .In the proposed method, first order statistical features such as contrast, Intensity , Entropy, Kurtosis and spectral energy and GLCM features extracted were showed promising results. The ranges of these first order statistics and GLCM based features extracted are highly discriminant between grade I and Grade III. In this study which gives statistical textural information of grade I and grade III Glioma which is very useful for further classification and analysis and thus assisting Radiologist in greater extent.
Resumo:
One of the interesting consequences of Einstein's General Theory of Relativity is the black hole solutions. Until the observation made by Hawking in 1970s, it was believed that black holes are perfectly black. The General Theory of Relativity says that black holes are objects which absorb both matter and radiation crossing the event horizon. The event horizon is a surface through which even light is not able to escape. It acts as a one sided membrane that allows the passage of particles only in one direction i.e. towards the center of black holes. All the particles that are absorbed by black hole increases the mass of the black hole and thus the size of event horizon also increases. Hawking showed in 1970s that when applying quantum mechanical laws to black holes they are not perfectly black but they can emit radiation. Thus the black hole can have temperature known as Hawking temperature. In the thesis we have studied some aspects of black holes in f(R) theory of gravity and Einstein's General Theory of Relativity. The scattering of scalar field in this background space time studied in the first chapter shows that the extended black hole will scatter scalar waves and have a scattering cross section and applying tunneling mechanism we have obtained the Hawking temperature of this black hole. In the following chapter we have investigated the quasinormal properties of the extended black hole. We have studied the electromagnetic and scalar perturbations in this space-time and find that the black hole frequencies are complex and show exponential damping indicating the black hole is stable against the perturbations. In the present study we show that not only the black holes exist in modified gravities but also they have similar properties of black hole space times in General Theory of Relativity. 2 + 1 black holes or three dimensional black holes are simplified examples of more complicated four dimensional black holes. Thus these models of black holes are known as toy models of black holes in four dimensional black holes in General theory of Relativity. We have studied some properties of these types of black holes in Einstein model (General Theory of Relativity). A three dimensional black hole known as MSW is taken for our study. The thermodynamics and spectroscopy of MSW black hole are studied and obtained the area spectrum which is equispaced and different thermo dynamical properties are studied. The Dirac perturbation of this three dimensional black hole is studied and the resulting quasinormal spectrum of this three dimensional black hole is obtained. The different quasinormal frequencies are tabulated in tables and these values show an exponential damping of oscillations indicating the black hole is stable against the mass less Dirac perturbation. In General Theory of Relativity almost all solutions contain singularities. The cosmological solution and different black hole solutions of Einstein's field equation contain singularities. The regular black hole solutions are those which are solutions of Einstein's equation and have no singularity at the origin. These solutions possess event horizon but have no central singularity. Such a solution was first put forward by Bardeen. Hayward proposed a similar regular black hole solution. We have studied the thermodynamics and spectroscopy of Hay-ward regular black holes. We have also obtained the different thermodynamic properties and the area spectrum. The area spectrum is a function of the horizon radius. The entropy-heat capacity curve has a discontinuity at some value of entropy showing a phase transition.