886 resultados para Engineering, Industrial|Artificial Intelligence
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nowadays, fraud detection is important to avoid nontechnical energy losses. Various electric companies around the world have been faced with such losses, mainly from industrial and commercial consumers. This problem has traditionally been dealt with using artificial intelligence techniques, although their use can result in difficulties such as a high computational burden in the training phase and problems with parameter optimization. A recently-developed pattern recognition technique called optimum-path forest (OPF), however, has been shown to be superior to state-of-the-art artificial intelligence techniques. In this paper, we proposed to use OPF for nontechnical losses detection, as well as to apply its learning and pruning algorithms to this purpose. Comparisons against neural networks and other techniques demonstrated the robustness of the OPF with respect to commercial losses automatic identification.
Resumo:
Artificial neural networks are dynamic systems consisting of highly interconnected and parallel nonlinear processing elements. Systems based on artificial neural networks have high computational rates due to the use of a massive number of these computational elements. Neural networks with feedback connections provide a computing model capable of solving a rich class of optimization problems. In this paper, a modified Hopfield network is developed for solving problems related to operations research. The internal parameters of the network are obtained using the valid-subspace technique. Simulated examples are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC.
Resumo:
This paper describes a method of identifying morphological attributes that classify wear particles in relation to the wear process from which they originate and permit the automatic identification without human expertise. The method is based on the use of Multi Layer Perceptron (MLP) for analysis of specific types of microscopic wear particles. The classification of the wear particles was performed according to their morphological attributes of size and aspect ratio, among others. (C) 2010 Journal of Mechanical Engineering. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Este artigo é uma tentativa de delinear as principais características da pesquisa numa nova área de estudos a chamada Inteligência Artificial (AI). Os itens 1 e 2 constituem um rápido histórico da AI e seus pressupostos básicos. O item 3 trata da teoria de resolução de problemas, desenvolvida por A. Newell e H. Simon. O item 4 procura mostrar a relevância da AI para a Filosofia, em especial para a filosofia da Mente e para a Teoria do Conhecimento.
Resumo:
O artigo aborda problemas filosóficos relativos à natureza da intencionalidade e da representação mental. A primeira parte apresenta um breve histórico dos problemas, percorrendo rapidamente alguns episódios da filosofia clássica e da filosofia contemporânea. A segunda parte examina o Chinese Room Argument (Argumento do Quarto do Chinês) formulado por J. Searle. A terceira parte desenvolve alguns argumentos visando mostrar a inadequação do modelo funcionalista de mente na construção de robots. A conclusão (quarta parte) aponta algumas alternativas ao modelo funcionalista tradicional, como, por exemplo, o conexionismo.
Resumo:
Intendding to understand how the human mind operates, some philosophers and psycologists began to study about rationality. Theories were built from those studies and nowadays that interest have been extended to many other areas such as computing engineering and computing science, but with a minimal distinction at its goal: to understand the mind operational proccess and apply it on agents modelling to become possible the implementation (of softwares or hardwares) with the agent-oriented paradigm where agents are able to deliberate their own plans of actions. In computing science, the sub-area of multiagents systems has progressed using several works concerning artificial intelligence, computational logic, distributed systems, games theory and even philosophy and psycology. This present work hopes to show how it can be get a logical formalisation extention of a rational agents architecture model called BDI (based in a philosophic Bratman s Theory) in which agents are capable to deliberate actions from its beliefs, desires and intentions. The formalisation of this model is called BDI logic and it is a modal logic (in general it is a branching time logic) with three access relations: B, D and I. And here, it will show two possible extentions that tranform BDI logic in a modal-fuzzy logic where the formulae and the access relations can be evaluated by values from the interval [0,1]
Resumo:
This paper presents an approach to integrate an artificial intelligence (AI) technique, concretely rule-based processing, into mobile agents. In particular, it focuses on the aspects of designing and implementing an appropriate inference engine of small size to reduce migration costs. The main goal is combine two lines of agent research, First, the engineering oriented approach on mobile agent architectures, and, second, the AI related approach on inference engines driven by rules expressed in a restricted subset of first-order predicate logic (FOPL). In addition to size reduction, the main functions of this type of engine were isolated, generalized and implemented as dynamic components, making possible not only their migration with the agent, but also their dynamic migration and loading on demand. A set of classes for representing and exchanging knowledge between rule-based systems was also proposed.
Resumo:
Domains where knowledge representation is too complex to be described analytically and in a deterministic way is very common in the petroleum industry, particularly in the field of exploration and production. In these domains, applications of artificial intelligence techniques are very suitable, especially in cases where the preservation of corporate and technical knowledge is important. The Laboratory for Research on Artificial Intelligence Applied to Petroleum Engineering (LIAP) at Unicamp, has, during the last 10 years, dedicated research efforts to build intelligent systems in well drilling and petroleum production fields. In the following sections, recent advances in intelligent systems, under development in the research laboratory, are described. (C) 2001 Published by Elsevier B.V. B.V.
Resumo:
This paper traces the development of a software tool, based oil a combination of artificial neural networks (ANN) and a few process equations. aiming to serve as a backup operation instrument in the reference generation for real-time controllers of a steel tandem cold mill By emulating the mathematical model responsible for generating presets under normal operational conditions, the system works as ail option to maintain plant operation in the event of a failure in the processing unit that executes the mathematical model. The system, built from the production data collected over six years of plant operation, steered to the replacement of the former backup operation mode (based oil a lookup table). which degraded both product quality and plant productivity. The study showed that ANN are appropriated tools for the intended purpose and that by this instrument it is possible to achieve nearly the totality of the presets needed by this land of process. The text characterizes the problem, relates the investigated options to solve it. justifies the choice of the ANN approach, describes the methodology and system implementation and, finally, shows and discusses the attained results. (C) 2009 Elsevier Ltd. All rights reserved
Resumo:
The development of an offshore field demands knowledge of many experts to choose the different components of an offshore production system. All the specialized parts of this knowledge are intrinsically related. The aim of this paper is to use Fuzzy Sets and knowledge-based systems to describe and formalize the phases of development of an offshore production system project, in order to share and to manage the required knowledge for carrying out a project, while at the same time proposing alternatives for the oil field configuration.
Resumo:
The communication between user and software is a basic stage in any Interaction System project. In interactive systems, this communication is established by the means of a graphical interface, whose objective is to supply a visual representation of the main entities and functions present in the Virtual Environment. New ways of interacting in computational systems have been minimizing the gap in the relationship between man and computer, and therefore enhancing its usability. The objective of this paper, therefore, is to present a proposal for a non-conventional user interface library called ARISupport, which supplies ARToolKit applications developers with an opportunity to create simple GUI interfaces, and provides some of the functionality used in Augmented Reality systems. © Springer-Verlag Berlin Heidelberg 2005.
Resumo:
The main objective involved with this paper consists of presenting the results obtained from the application of artificial neural networks and statistical tools in the automatic identification and classification process of faults in electric power distribution systems. The developed techniques to treat the proposed problem have used, in an integrated way, several approaches that can contribute to the successful detection process of faults, aiming that it is carried out in a reliable and safe way. The compilations of the results obtained from practical experiments accomplished in a pilot radial distribution feeder have demonstrated that the developed techniques provide accurate results, identifying and classifying efficiently the several occurrences of faults observed in the feeder.
Resumo:
The capacitor placement problem for radial distribution networks aims to determine capacitor types, sizes, locations and control scheme. This is a combinatorial problem that can be formulated as a mixed integer nonlinear program. The paper presents an algorithm inspired in artificial immune systems and developed for this specific problem. A good performance was obtained through experimental tests applied to known systems. © 2006 IEEE.