916 resultados para Energy consumption pattern, Rural energy consumption pattern in Kerala
Resumo:
Current obesity prevention strategies recommend increasing daily physical activity, assuming that increased activity will lead to corresponding increases in total energy expenditure and prevent or reverse energy imbalance and weight gain [1-3]. Such Additive total energy expenditure models are supported by exercise intervention and accelerometry studies reporting positive correlations between physical activity and total energy expenditure [4] but are challenged by ecological studies in humans and other species showing that more active populations do not have higher total energy expenditure [5-8]. Here we tested a Constrained total energy expenditure model, in which total energy expenditure increases with physical activity at low activity levels but plateaus at higher activity levels as the body adapts to maintain total energy expenditure within a narrow range. We compared total energy expenditure, measured using doubly labeled water, against physical activity, measured using accelerometry, for a large (n = 332) sample of adults living in five populations [9]. After adjusting for body size and composition, total energy expenditure was positively correlated with physical activity, but the relationship was markedly stronger over the lower range of physical activity. For subjects in the upper range of physical activity, total energy expenditure plateaued, supporting a Constrained total energy expenditure model. Body fat percentage and activity intensity appear to modulate the metabolic response to physical activity. Models of energy balance employed in public health [1-3] should be revised to better reflect the constrained nature of total energy expenditure and the complex effects of physical activity on metabolic physiology.
Resumo:
Traditionally, fossil fuels have always been the major sources of the modern energy production. However prices on these energy sources have been constantly increasing. The utilization of local biomass resources for energy production can substitute significant part of the required energy demand in different energy sectors. The introduction of the biomass usage can easily be started in the forest industry first as it possesses biomass in a large volume. The forest industry energy sector has the highest potential for the fast bioenergy development in the North-West Russia. Therefore, the question concerning rational and effective forest resources use is important today as well as the utilization of the forestry by-products. This work describes and analyzes the opportunities of utilising biomass, mainly, in the form of the wood by-products, for energy production processes in general, as well as for the northwest Russian forest industry conditions. The study also covers basic forest industry processes and technologies, so, the reader can get familiar with the information about the specific character of the biomass utilization. The work gives a comprehensive view on the northwest forest industry situation from the biomass utilisation point of view. By presenting existing large-scale sawmills and pulp and paper mills the work provides information for the evaluation of the future development of CHP investments in the northwest Russian forest industry.
Resumo:
This study considered the current situation of solid and liquid biomass fuels in Finland. The fact that industry consumes more than half of the total primary energy, widely applied combined heat and power production and a high share of solid biomass fuels in the total energy consumption are specific to the Finnish energy system. Wood is the most important source of bioenergy in Finland, representing 20% of the total energy consumption in 2007. Almost 80% of the woodbased energy is recovered from industrial by-products and residues. As a member of the European Union, Finland has committed itself to the Union’s climate and energy targets, such as reducing its overall emissions of green house gases to at least 20% below 1990 levels by 2020, and increasing the share of renewable energy in the gross final consumption. The renewable energy target approved for Finland is 38%. The present National Climate and Energy Strategy was introduced in November 2008. The strategy covers climate and energy policy measures up to 2020, and in brief thereafter, up to 2050. In recent years, the actual emissions have exceeded the Kyoto commitment and the trend of emissions is on the increase. In 2007, the share of renewable energy in the gross final energy consumption was approximately 25% (360 PJ). Without new energy policy measures, the final consumption of renewable energy would increase to 380 PJ, which would be approximately only 31% of the final energy consumption. In addition, green house gas emissions would exceed the 1990 levels by 20%. Meeting the targets will need the adoption of more active energy policy measures in coming years. The international trade of biomass fuels has a substantial importance for the utilisation of bioenergy in Finland. In 2007, the total international trading of solid and liquid biomass fuels was approximately 77 PJ, of which import was 62 PJ. Most of the import is indirect and takes place within the forest industry’s raw wood imports. In 2007, as much as 21% of wood energy was based on foreign-origin wood. Wood pellets and tall oil form the majority of export streams of biomass fuels. The indirect import of wood fuels peaked in 2006 to 61 PJ. The foreseeable decline in raw wood import to Finland will decrease the indirect import of wood fuels. In 2004– 2007, the direct trade of solid and liquid biomass fuels has been on a moderate growth path. In 2007, the import of palm oil and export of bio-diesel emerged, as a large, 170 000 t/yr biodiesel plant came into operation in Porvoo.
Resumo:
Transportation of fluids is one of the most common and energy intensive processes in the industrial and HVAC sectors. Pumping systems are frequently subject to engineering malpractice when dimensioned, which can lead to poor operational efficiency. Moreover, pump monitoring requires dedicated measuring equipment, which imply costly investments. Inefficient pump operation and improper maintenance can increase energy costs substantially and even lead to pump failure. A centrifugal pump is commonly driven by an induction motor. Driving the induction motor with a frequency converter can diminish energy consumption in pump drives and provide better control of a process. In addition, induction machine signals can also be estimated by modern frequency converters, dispensing with the use of sensors. If the estimates are accurate enough, a pump can be modelled and integrated into the frequency converter control scheme. This can open the possibility of joint motor and pump monitoring and diagnostics, thereby allowing the detection of reliability-reducing operating states that can lead to additional maintenance costs. The goal of this work is to study the accuracy of rotational speed, torque and shaft power estimates calculated by a frequency converter. Laboratory tests were performed in order to observe estimate behaviour in both steady-state and transient operation. An induction machine driven by a vector-controlled frequency converter, coupled with another induction machine acting as load was used in the tests. The estimated quantities were obtained through the frequency converter’s Trend Recorder software. A high-precision, HBM T12 torque-speed transducer was used to measure the actual values of the aforementioned variables. The effect of the flux optimization energy saving feature on the estimate quality was also studied. A processing function was developed in MATLAB for comparison of the obtained data. The obtained results confirm the suitability of this particular converter to provide accurate enough estimates for pumping applications.
Resumo:
Fan systems are responsible for approximately 10% of the electricity consumption in industrial and municipal sectors, and it has been found that there is energy-saving potential in these systems. To this end, variable speed drives (VSDs) are used to enhance the efficiency of fan systems. Usually, fan system operation is optimized based on measurements of the system, but there are seldom readily installed meters in the system that can be used for the purpose. Thus, sensorless methods are needed for the optimization of fan system operation. In this thesis, methods for the fan operating point estimation with a variable speed drive are studied and discussed. These methods can be used for the energy efficient control of the fan system without additional measurements. The operation of these methods is validated by laboratory measurements and data from an industrial fan system. In addition to their energy consumption, condition monitoring of fan systems is a key issue as fans are an integral part of various production processes. Fan system condition monitoring is usually carried out with vibration measurements, which again increase the system complexity. However, variable speed drives can already be used for pumping system condition monitoring. Therefore, it would add to the usability of a variablespeed- driven fan system if the variable speed drive could be used as a condition monitoring device. In this thesis, sensorless detection methods for three lifetime-reducing phenomena are suggested: these are detection of the fan contamination build-up, the correct rotational direction, and the fan surge. The methods use the variable speed drive monitoring and control options for the detection along with simple signal processing methods, such as power spectrum density estimates. The methods have been validated by laboratory measurements. The key finding of this doctoral thesis is that a variable speed drive can be used on its own as a monitoring and control device for the fan system energy efficiency, and it can also be used in the detection of certain lifetime-reducing phenomena.
Resumo:
The Thesis is dedicated to development of an operative tool to support decision making of battery energy storages implementation in distribution networks. The basics of various battery technologies, their perspectives and challenges are represented in the Thesis. Mathematical equations that describe economic effect from battery energy storage installation are offered. The main factors that influence profitability of battery settings have been explored and mathematically defined. Mathematical model and principal trends of battery storage profitability under an impact of the major factors are determined. The meaning of annual net value was introduced to show the difference between savings and required costs. The model gives a clear vision for dependencies between annual net value and main factors. Proposals for optimal network and battery characteristics are suggested.
Resumo:
Cloud Computing paradigm is continually evolving, and with it, the size and the complexity of its infrastructure. Assessing the performance of a Cloud environment is an essential but strenuous task. Modeling and simulation tools have proved their usefulness and powerfulness to deal with this issue. This master thesis work contributes to the development of the widely used cloud simulator CloudSim and proposes CloudSimDisk, a module for modeling and simulation of energy-aware storage in CloudSim. As a starting point, a review of Cloud simulators has been conducted and hard disk drive technology has been studied in detail. Furthermore, CloudSim has been identified as the most popular and sophisticated discrete event Cloud simulator. Thus, CloudSimDisk module has been developed as an extension of CloudSim v3.0.3. The source code has been published for the research community. The simulation results proved to be in accordance with the analytic models, and the scalability of the module has been presented for further development.
Resumo:
The electricity distribution sector will face significant changes in the future. Increasing reliability demands will call for major network investments. At the same time, electricity end-use is undergoing profound changes. The changes include future energy technologies and other advances in the field. New technologies such as microgeneration and electric vehicles will have different kinds of impacts on electricity distribution network loads. In addition, smart metering provides more accurate electricity consumption data and opportunities to develop sophisticated load modelling and forecasting approaches. Thus, there are both demands and opportunities to develop a new type of long-term forecasting methodology for electricity distribution. The work concentrates on the technical and economic perspectives of electricity distribution. The doctoral dissertation proposes a methodology to forecast electricity consumption in the distribution networks. The forecasting process consists of a spatial analysis, clustering, end-use modelling, scenarios and simulation methods, and the load forecasts are based on the application of automatic meter reading (AMR) data. The developed long-term forecasting process produces power-based load forecasts. By applying these results, it is possible to forecast the impacts of changes on electrical energy in the network, and further, on the distribution system operator’s revenue. These results are applicable to distribution network and business planning. This doctoral dissertation includes a case study, which tests the forecasting process in practice. For the case study, the most prominent future energy technologies are chosen, and their impacts on the electrical energy and power on the network are analysed. The most relevant topics related to changes in the operating environment, namely energy efficiency, microgeneration, electric vehicles, energy storages and demand response, are discussed in more detail. The study shows that changes in electricity end-use may have radical impacts both on electrical energy and power in the distribution networks and on the distribution revenue. These changes will probably pose challenges for distribution system operators. The study suggests solutions for the distribution system operators on how they can prepare for the changing conditions. It is concluded that a new type of load forecasting methodology is needed, because the previous methods are no longer able to produce adequate forecasts.
Resumo:
ABSTRACT Background: Previous studies have implied that weight-bearing, intense and prolonged physical activities optimize bone accretion during the grow^ing years. The majority of past inquiries have used dual-energy X-ray absorptiometry (DXA) to examine bone strength and hand-wrist radiography to determine skeletal maturity in children. Recently, quantitative ultrasound (QUS) technologies have been developed to examine bone properties and skeletal maturity in a safe, noninvasive and cost-effective manner. Objective: The purpose of this study was to compare bone properties and skeletal maturity in competitive male child and adolescent athletes with minimallyactive, age-matched controls, using QUS technology. >. Methods: In total, 224 males were included in the study. The 115 pre-pubertal boys aged 10-12 years consisted of control, minimally-active children (n=34), soccer players (n=26), gymnasts (n=25) and hockey players (n=30). In addition, the 109 late-pubertal boys aged 14-16 years consisted of control, minimally-active adolescents (n=31), soccer players (n=30), gymnasts (n=17) and hockey players (n=31). The athletic groups were elite level players that predominantly trained year-round. Physical activity, nutrition and sports participation were assessed with various questionnaires. Anthropometries, such as height, weight and relative body fat percentage (BF%) were assessed using standard measures. Skeletal strength and age were evaluated using bone QUS. Lastly, salivary testosterone (sT) concentration was measured using Radioimmunoassay (RIA). Results: Within each age group, there were no significant differences between the activity groups in age and pubertal stage. An age effect was apparent in all variables, as expected. A sport effect was noted in all physical characteristics: the child and adolescent gymnasts were shorter and lighter than other sports groups. Adiposity was greater in the controls and in the hockey players. All child subjects were pubertal stage (fanner) I or II, while adolescent subjects were pubertal stage IV or V. There were no differences in daily energy and mineral intakes between sports groups. In both age groups, gymnasts had a higher training volume than other athletic groups. Bone speed of sound (50s) was higher in adolescents compared with the children. Gymnasts had signifieantly higher radial 50S than controls, hockey and soccer players in both age cohorts. Hockey athletes also had higher radial 50S than controls and soccer players in the child and adolescent groups, respectiyely. Child gymnasts and soccer players had greater tibial 50S compared with the hockey players and control groups. Likewise, adolescent gymnasts and soccer players had higher tibial SoS compared with the control group. No interaction was apparent between age and type of activity in any of the bone measures. » Lastly, maturity as assessed by sT and secondary sex characteristics (Tanner stage) was not different between sports group within each age group. Despite the similarity in chronological age, androgen levels and sexual maturity, differences between activity groups were noted in skeletal maturity. In the younger group, hockey players had the highest bone age while the soccer players had the lowest bone age. In the adolescent group, gymnasts and hockey players were characterized by higher skeletal maturity compared with controls. An interaction between the age and sport type effects was apparent in skeletal maturity, reflecting the fact that among the children, the soccer players were significantly less mature than the rest of the groups, while in the adolescents, the controls were the least skeletally mature. Summary and Conclusions: In summary, radial and tibial SOS are enhanced by the unique loading pattern in each sport (i.e, upper and lower extremities in gymnastics, lower extremities in soccer), with no cumulative effect between childhood and adolescence. That is, the effect of sport participation on bone SOS was apparent already among the young athletes. Enhanced bone properties among athletes of specific sports suggest that participation in these sports can improve bone strength and potential bone health.
Resumo:
Rattlesnakes use their facial pit organs to sense external thermal fluctuations. A temperature decrease in the heat-sensing membrane of the pit organ has the potential to enhance heat flux between their endothermic prey and the thermal sensors, affect the optimal functioning of thermal sensors in the pit membrane and reduce the formation of thermal ‘‘afterimages’’, improving thermal detection. We examined the potential for respiratory cooling to improve strike behaviour, capture, and consumption of endothermic prey in the South American rattlesnake, as behavioural indicators of thermal detection. Snakes with a higher degree of rostral cooling were more accurate during the strike, attacking warmer regions of their prey, and relocated and consumed their prey faster. These findings reveal that by cooling their pit organs, rattlesnakes increase their ability to detect endothermic prey; disabling the pit organs caused these differences to disappear. Rattlesnakes also modify the degree of rostral cooling by altering their breathing pattern in response to biologically relevant stimuli, such as a mouse odour. Our findings reveal that low humidity increases their ability to detect endothermic prey, suggesting that habitat and ambush sites election in the wild may be influenced by external humidity levels as well as temperature.
Resumo:
En mai 2009, l’Ontario a adopté la Loi sur l’énergie verte et devint ainsi la première juridiction en Amérique du Nord à promouvoir l’énergie renouvelable par le biais de tarifs de rachat garantis. En novembre 2010, dans son Plan énergétique à long terme, la province s’est engagée à déployer 10,700 MW en capacité de production d’énergie renouvelable non-hydroélectrique par 2018. Il s’agit de la cible de déploiement la plus élevée dans ce secteur au Canada. Les infrastructures de production et de distribution d’électricité comprennent des coûts d’installation élevés, une faible rotation des investissements et de longs cycles de vie, facteurs qui servent habituellement à ancrer les politiques énergétiques dans une dynamique de dépendance au sentier. Depuis le début des années 2000, cependant, l’Ontario a commencé à diverger de sa traditionnelle dépendance aux grandes centrales hydroélectriques, aux centrales à charbon et aux centrales nucléaires par une série de petits changements graduels qui feront grimper la part d’énergie renouvelable dans le mix énergétique provincial à 15% par 2018. Le but de ce mémoire est d’élucider le mécanisme de causalité qui a sous-tendu l’évolution graduelle de l’Ontario vers la promotion de l’énergie renouvelable par le biais de tarifs de rachat garantis et d’une cible de déploiement élevée. Ce mémoire applique la théorie du changement institutionnel graduel de Mahoney et Thelen au cas du développement de politiques d’énergie renouvelable en Ontario afin de mieux comprendre les causes, les modes et les effets du changement institutionnel. Nous découvrons que le contexte canadien de la politique énergétique favorise la sédimentation institutionnelle, c’est-à-dire un mode changement caractérisé par de petits gains favorisant l’énergie renouvelable. Ces gains s’accumulent pourtant en transformation politique importante. En Ontario, la mise sur pied d’une vaste coalition pour l’énergie renouvelable fut à l’origine du changement. Les premiers revendicateurs de politiques favorisant l’énergie renouvelable – les environnementalistes et les premières entreprises d’approvisionnement et de service en technologies d’énergie renouvelable – ont dû mettre sur pied un vaste réseau d’appui, représentant la quasi-totalité de la société ontarienne, pour faire avancer leur cause. Ce réseau a fait pression sur le gouvernement provincial et, en tant que front commun, a revendiqué l’énergie renouvelable non seulement comme solution aux changements climatiques, mais aussi comme solution à maints autres défis pressants de santé publique et de développement économique. La convergence favorable d’un nombre de facteurs contextuels a certes contribué à la réussite du réseau ontarien pour l’énergie renouvelable. Cependant, le fait que ce réseau ait trouvé des alliés au sein de l’exécutif du gouvernement provincial s’est révélé d’importance cruciale quant à l’obtention de politiques favorisant l’énergie renouvelable. Au Canada, les gouvernements provinciaux détiennent l’ultime droit de veto sur la politique énergétique. Ce n’est qu’en trouvant des alliés aux plus hauts échelons du gouvernement que le réseau ontarien pour l’énergie renouvelable a pu réussir.
Resumo:
The basic objective of the present study has been to observe the process and pattern of employment diversification among the rural women workers in Ernakulam district. The evidences are that the women workers in the rural areas of the state are being increasingly diversified into the tertiary sector. The clear cut evidence for the fact that in Kerala non-agricultural employment of rural women is increasing with more and more of them getting diversified into the tertiary sector. The women get more self esteem and recognition in terms of the work being done by them. In the urban areas of the state as a poverty eradicating measure the Kerala government has already introduced a new scheme under the banner of Kudumbasree. Another fact noticed in the study that the sectoral shift of women workers has posed a grave problem to the agricultural sector. The reluctance of workers to do manual jobs on land and the prevalence of high wages among the agricultural labours has left many a cultivable area fallow or has induced farmers to shift to less labour –intensive crops. The situation is expected to worsen in future as even the high wages fail to attract the young generation to this sector. To conclude the study has fulfilled all its objectives, viz; highlighting the rural employment structure in Kerala, examining the process, pattern, determinants and consequences of diversification among rural women workers in the sample villages. Being the first of its kind at the micro level in the state it contributes to the available literature in the area enriching the database that is crucially lacking for devising projects at the village and block-level. There exists ample scope for future research of similar nature in an urban background where the secondary data-sources are hinding towards a reversal of trends from non-agriculture to agriculture.
Resumo:
The study deals with the generation of variability for salt tolerance in rice using tissue culture techniques. Rice is the staple food of more than half of the world’s population. The management of drought, salinity and acidity in soils are all energy intensive agricultural practices. The Genetic variability is the basis of crop improvement. Somaclonal and androclonal variation can be effectively used for this purpose. In the present study, eight isozymes were studied and esterase and isocitric dehydrogenase was found to have varietal specific, developmental stage specific and stress specific banding pattern in rice. Under salt stress thickness of bands and enzyme activity showed changes. Pokkali, a moderately salt tolerant variety, had a specific band 7, which was present only in this variety and showed slight changes under stress. This band was faint in tillering and flowering stage .Based on the results obtained in the present study it is suggested that esterase could possibly be used as an isozyme marker for salt tolerance in rice. Varietal differences and stage specific variations could be detected using esterase and isocitric dehydrogenase . Moreover somaclonal and androclonal variation could be effectively detected using isozyme markers.
Resumo:
The present work is an attempt to understand the characteristics of high energy ball milling on the structural, electrical and magnetic properties of some normal spinets in the ultra fine regime, Magnetism and magnetic materials have been a fascinating subject for the mankind ever since the discovery of lodestone. Since then, man has been applying this principle of magnetism to build devices for various applications. Magnetism can be classified broadly into five categories. They are diamagnetic, paramagnetic, ferromagnetic antiferromagnetic and ferrimagnetic. Of these, ferro and ferri magnetic materials assume great commercial importance due to their unique properties like appropriate magnetic characteristics, high resistivity and low eddy current losses. The emergence of nanoscience and nanotechnology during the last decade had its impact in the field of magnetism and magnetic materials too. Now, it is common knowledge that materials synthesized in the nanoregime exhibit novel and superlative properties with respect to their coarser sized counterparts in the micron regime. These studies reveal that dielectric properties can be varied appreciably by high-energy ball milling in nanosized zinc ferrites produced by coprecipitation method. A semi conducting behaviour was observed in these materials with the Oxygen vacancies acting as the main charge carrier for conduction, which was produced at the time of coprecipitation and milling. Thus through this study, it was possible to successfully investigate the finite size effects on the structural, electrical and magnetic properties of normal spinels in the ultra fine regime
Resumo:
This study was conducted to identify the concentration dependence of the operating wavelengths and the relative intensities in which a dye mixture doped polymer optical fibre can operate. A comparative study of the radiative and Forster type energy transfer processes in Coumarin 540:Rhodamine 6G, Coumarin 540:Rhodamine B and Rhodamine 6G:Rhodamine B in methyl methacrylate (MMA) and poly(methyl methacrylate) (PMMA) was done by fabricating a series of dye mixture doped polymer rods which have two emission peaks with varying relative intensities. These rods can be used as preforms for the fabrication of polymer optical fibre amplifiers operating in the multi-wavelength regime. The 445 nm line from an Nd:YAG pumped optical parametric oscillator (OPO) was used as the excitation source for the first two dye pairs and a frequency doubled Nd:YAG laser emitting at 532 nm was used to excite the Rh 6G:Rh B pair. The fluorescence lifetimes of the donor molecule in pure form as well as in the mixtures were experimentally measured in both monomer and polymer matrices by time-correlated single photon counting technique. The energy transfer rate constants and transfer efficiencies were calculated and their dependence on the acceptor concentration was analysed. It was found that radiative energy transfer mechanisms are more efficient in all the three dye pairs in liquid and solid matrices.