935 resultados para Electronic data processing - Distributed processing
Resumo:
Die vorliegende Dissertation analysiert die Middleware- Technologien CORBA (Common Object Request Broker Architecture), COM/DCOM (Component Object Model/Distributed Component Object Model), J2EE (Java-2-Enterprise Edition) und Web Services (inklusive .NET) auf ihre Eignung bzgl. eng und lose gekoppelten verteilten Anwendungen. Zusätzlich werden primär für CORBA die dynamischen CORBA-Komponenten DII (Dynamic Invocation Interface), IFR (Interface Repository) und die generischen Datentypen Any und DynAny (dynamisches Any) im Detail untersucht. Ziel ist es, a. konkrete Aussagen über diese Komponenten zu erzielen, und festzustellen, in welchem Umfeld diese generischen Ansätze ihre Berechtigung finden. b. das zeitliche Verhalten der dynamischen Komponenten bzgl. der Informationsgewinnung über die unbekannten Objekte zu analysieren. c. das zeitliche Verhalten der dynamischen Komponenten bzgl. ihrer Kommunikation zu messen. d. das zeitliche Verhalten bzgl. der Erzeugung von generischen Datentypen und das Einstellen von Daten zu messen und zu analysieren. e. das zeitliche Verhalten bzgl. des Erstellens von unbekannten, d. h. nicht in IDL beschriebenen Datentypen zur Laufzeit zu messen und zu analysieren. f. die Vorzüge/Nachteile der dynamischen Komponenten aufzuzeigen, ihre Einsatzgebiete zu definieren und mit anderen Technologien wie COM/DCOM, J2EE und den Web Services bzgl. ihrer Möglichkeiten zu vergleichen. g. Aussagen bzgl. enger und loser Koppelung zu tätigen. CORBA wird als standardisierte und vollständige Verteilungsplattform ausgewählt, um die o. a. Problemstellungen zu untersuchen. Bzgl. seines dynamischen Verhaltens, das zum Zeitpunkt dieser Ausarbeitung noch nicht oder nur unzureichend untersucht wurde, sind CORBA und die Web Services richtungsweisend bzgl. a. Arbeiten mit unbekannten Objekten. Dies kann durchaus Implikationen bzgl. der Entwicklung intelligenter Softwareagenten haben. b. der Integration von Legacy-Applikationen. c. der Möglichkeiten im Zusammenhang mit B2B (Business-to-Business). Diese Problemstellungen beinhalten auch allgemeine Fragen zum Marshalling/Unmarshalling von Daten und welche Aufwände hierfür notwendig sind, ebenso wie allgemeine Aussagen bzgl. der Echtzeitfähigkeit von CORBA-basierten, verteilten Anwendungen. Die Ergebnisse werden anschließend auf andere Technologien wie COM/DCOM, J2EE und den Web Services, soweit es zulässig ist, übertragen. Die Vergleiche CORBA mit DCOM, CORBA mit J2EE und CORBA mit Web Services zeigen im Detail die Eignung dieser Technologien bzgl. loser und enger Koppelung. Desweiteren werden aus den erzielten Resultaten allgemeine Konzepte bzgl. der Architektur und der Optimierung der Kommunikation abgeleitet. Diese Empfehlungen gelten uneingeschränkt für alle untersuchten Technologien im Zusammenhang mit verteilter Verarbeitung.
Resumo:
Hybrid technologies, thanks to the convergence of integrated microelectronic devices and new class of microfluidic structures could open new perspectives to the way how nanoscale events are discovered, monitored and controlled. The key point of this thesis is to evaluate the impact of such an approach into applications of ion-channel High Throughput Screening (HTS)platforms. This approach offers promising opportunities for the development of new classes of sensitive, reliable and cheap sensors. There are numerous advantages of embedding microelectronic readout structures strictly coupled to sensing elements. On the one hand the signal-to-noise-ratio is increased as a result of scaling. On the other, the readout miniaturization allows organization of sensors into arrays, increasing the capability of the platform in terms of number of acquired data, as required in the HTS approach, to improve sensing accuracy and reliabiity. However, accurate interface design is required to establish efficient communication between ionic-based and electronic-based signals. The work made in this thesis will show a first example of a complete parallel readout system with single ion channel resolution, using a compact and scalable hybrid architecture suitable to be interfaced to large array of sensors, ensuring simultaneous signal recording and smart control of the signal-to-noise ratio and bandwidth trade off. More specifically, an array of microfluidic polymer structures, hosting artificial lipid bilayers blocks where single ion channel pores are embededed, is coupled with an array of ultra-low noise current amplifiers for signal amplification and data processing. As demonstrating working example, the platform was used to acquire ultra small currents derived by single non-covalent molecular binding between alpha-hemolysin pores and beta-cyclodextrin molecules in artificial lipid membranes.
Resumo:
The Gaia space mission is a major project for the European astronomical community. As challenging as it is, the processing and analysis of the huge data-flow incoming from Gaia is the subject of thorough study and preparatory work by the DPAC (Data Processing and Analysis Consortium), in charge of all aspects of the Gaia data reduction. This PhD Thesis was carried out in the framework of the DPAC, within the team based in Bologna. The task of the Bologna team is to define the calibration model and to build a grid of spectro-photometric standard stars (SPSS) suitable for the absolute flux calibration of the Gaia G-band photometry and the BP/RP spectrophotometry. Such a flux calibration can be performed by repeatedly observing each SPSS during the life-time of the Gaia mission and by comparing the observed Gaia spectra to the spectra obtained by our ground-based observations. Due to both the different observing sites involved and the huge amount of frames expected (≃100000), it is essential to maintain the maximum homogeneity in data quality, acquisition and treatment, and a particular care has to be used to test the capabilities of each telescope/instrument combination (through the “instrument familiarization plan”), to devise methods to keep under control, and eventually to correct for, the typical instrumental effects that can affect the high precision required for the Gaia SPSS grid (a few % with respect to Vega). I contributed to the ground-based survey of Gaia SPSS in many respects: with the observations, the instrument familiarization plan, the data reduction and analysis activities (both photometry and spectroscopy), and to the maintenance of the data archives. However, the field I was personally responsible for was photometry and in particular relative photometry for the production of short-term light curves. In this context I defined and tested a semi-automated pipeline which allows for the pre-reduction of imaging SPSS data and the production of aperture photometry catalogues ready to be used for further analysis. A series of semi-automated quality control criteria are included in the pipeline at various levels, from pre-reduction, to aperture photometry, to light curves production and analysis.
Resumo:
Advances in biomedical signal acquisition systems for motion analysis have led to lowcost and ubiquitous wearable sensors which can be used to record movement data in different settings. This implies the potential availability of large amounts of quantitative data. It is then crucial to identify and to extract the information of clinical relevance from the large amount of available data. This quantitative and objective information can be an important aid for clinical decision making. Data mining is the process of discovering such information in databases through data processing, selection of informative data, and identification of relevant patterns. The databases considered in this thesis store motion data from wearable sensors (specifically accelerometers) and clinical information (clinical data, scores, tests). The main goal of this thesis is to develop data mining tools which can provide quantitative information to the clinician in the field of movement disorders. This thesis will focus on motor impairment in Parkinson's disease (PD). Different databases related to Parkinson subjects in different stages of the disease were considered for this thesis. Each database is characterized by the data recorded during a specific motor task performed by different groups of subjects. The data mining techniques that were used in this thesis are feature selection (a technique which was used to find relevant information and to discard useless or redundant data), classification, clustering, and regression. The aims were to identify high risk subjects for PD, characterize the differences between early PD subjects and healthy ones, characterize PD subtypes and automatically assess the severity of symptoms in the home setting.
Resumo:
Therapeutisches Drug Monitoring (TDM) umfasst die Messung von Medikamentenspiegeln im Blut und stellt die Ergebnisse in Zusammenhang mit dem klinischen Erscheinungsbild der Patienten. Dabei wird angenommen, dass die Konzentrationen im Blut besser mit der Wirkung korrelieren als die Dosis. Dies gilt auch für Antidepressiva. Voraussetzung für eine Therapiesteuerung durch TDM ist die Verfügbarkeit valider Messmethoden im Labor und die korrekte Anwendung des Verfahrens in der Klinik. Ziel dieser Arbeit war es, den Einsatz von TDM für die Depressionsbehandlung zu analysieren und zu verbessern. Im ersten Schritt wurde für das neu zugelassene Antidepressivum Duloxetin eine hochleistungsflüssig-chromatographische (HPLC) Methode mit Säulenschaltung und spektrophotometrischer Detektion etabliert und an Patienten für TDM angewandt. Durch Analyse von 280 Patientenproben wurde herausgefunden, dass Duloxetin-Konzentrationen von 60 bis 120 ng/ml mit gutem klinischen Ansprechen und einem geringen Risiko für Nebenwirkungen einhergingen. Bezüglich seines Interaktionspotentials erwies sich Duloxetin im Vergleich zu anderen Antidepressiva als schwacher Inhibitor des Cytochrom P450 (CYP) Isoenzyms 2D6. Es gab keinen Hinweis auf eine klinische Relevanz. Im zweiten Schritt sollte eine Methode entwickelt werden, mit der möglichst viele unterschiedliche Antidepressiva einschließlich deren Metaboliten messbar sind. Dazu wurde eine flüssigchromatographische Methode (HPLC) mit Ultraviolettspektroskopie (UV) entwickelt, mit der die quantitative Analyse von zehn antidepressiven und zusätzlich zwei antipsychotischen Substanzen innerhalb von 25 Minuten mit ausreichender Präzision und Richtigkeit (beide über 85%) und Sensitivität erlaubte. Durch Säulenschaltung war eine automatisierte Analyse von Blutplasma oder –serum möglich. Störende Matrixbestandteile konnten auf einer Vorsäule ohne vorherige Probenaufbereitung abgetrennt werden. Das kosten- und zeiteffektive Verfahren war eine deutliche Verbesserung für die Bewältigung von Proben im Laboralltag und damit für das TDM von Antidepressiva. Durch Analyse des klinischen Einsatzes von TDM wurden eine Reihe von Anwendungsfehlern identifiziert. Es wurde deshalb versucht, die klinische Anwendung des TDM von Antidepressiva durch die Umstellung von einer weitgehend händischen Dokumentation auf eine elektronische Bearbeitungsweise zu verbessern. Im Rahmen der Arbeit wurde untersucht, welchen Effekt man mit dieser Intervention erzielen konnte. Dazu wurde eine Labor-EDV eingeführt, mit der der Prozess vom Probeneingang bis zur Mitteilung der Messergebnisse auf die Stationen elektronisch erfolgte und die Anwendung von TDM vor und nach der Umstellung untersucht. Die Umstellung fand bei den behandelnden Ärzten gute Akzeptanz. Die Labor-EDV erlaubte eine kumulative Befundabfrage und eine Darstellung des Behandlungsverlaufs jedes einzelnen Patienten inklusive vorhergehender Klinikaufenthalte. Auf die Qualität der Anwendung von TDM hatte die Implementierung des Systems jedoch nur einen geringen Einfluss. Viele Anforderungen waren vor und nach der Einführung der EDV unverändert fehlerhaft, z.B. wurden häufig Messungen vor Erreichen des Steady State angefordert. Die Geschwindigkeit der Bearbeitung der Proben war im Vergleich zur vorher händischen Ausführung unverändert, ebenso die Qualität der Analysen bezüglich Richtigkeit und Präzision. Ausgesprochene Empfehlungen hinsichtlich der Dosierungsstrategie der angeforderten Substanzen wurden häufig nicht beachtet. Verkürzt wurde allerdings die mittlere Latenz, mit der eine Dosisanpassung nach Mitteilung des Laborbefundes erfolgte. Insgesamt ist es mit dieser Arbeit gelungen, einen Beitrag zur Verbesserung des Therapeutischen Drug Monitoring von Antidepressiva zu liefern. In der klinischen Anwendung sind allerdings Interventionen notwendig, um Anwendungsfehler beim TDM von Antidepressiva zu minimieren.
Resumo:
Data deduplication describes a class of approaches that reduce the storage capacity needed to store data or the amount of data that has to be transferred over a network. These approaches detect coarse-grained redundancies within a data set, e.g. a file system, and remove them.rnrnOne of the most important applications of data deduplication are backup storage systems where these approaches are able to reduce the storage requirements to a small fraction of the logical backup data size.rnThis thesis introduces multiple new extensions of so-called fingerprinting-based data deduplication. It starts with the presentation of a novel system design, which allows using a cluster of servers to perform exact data deduplication with small chunks in a scalable way.rnrnAfterwards, a combination of compression approaches for an important, but often over- looked, data structure in data deduplication systems, so called block and file recipes, is introduced. Using these compression approaches that exploit unique properties of data deduplication systems, the size of these recipes can be reduced by more than 92% in all investigated data sets. As file recipes can occupy a significant fraction of the overall storage capacity of data deduplication systems, the compression enables significant savings.rnrnA technique to increase the write throughput of data deduplication systems, based on the aforementioned block and file recipes, is introduced next. The novel Block Locality Caching (BLC) uses properties of block and file recipes to overcome the chunk lookup disk bottleneck of data deduplication systems. This chunk lookup disk bottleneck either limits the scalability or the throughput of data deduplication systems. The presented BLC overcomes the disk bottleneck more efficiently than existing approaches. Furthermore, it is shown that it is less prone to aging effects.rnrnFinally, it is investigated if large HPC storage systems inhibit redundancies that can be found by fingerprinting-based data deduplication. Over 3 PB of HPC storage data from different data sets have been analyzed. In most data sets, between 20 and 30% of the data can be classified as redundant. According to these results, future work in HPC storage systems should further investigate how data deduplication can be integrated into future HPC storage systems.rnrnThis thesis presents important novel work in different area of data deduplication re- search.
Resumo:
Data sets describing the state of the earth's atmosphere are of great importance in the atmospheric sciences. Over the last decades, the quality and sheer amount of the available data increased significantly, resulting in a rising demand for new tools capable of handling and analysing these large, multidimensional sets of atmospheric data. The interdisciplinary work presented in this thesis covers the development and the application of practical software tools and efficient algorithms from the field of computer science, aiming at the goal of enabling atmospheric scientists to analyse and to gain new insights from these large data sets. For this purpose, our tools combine novel techniques with well-established methods from different areas such as scientific visualization and data segmentation. In this thesis, three practical tools are presented. Two of these tools are software systems (Insight and IWAL) for different types of processing and interactive visualization of data, the third tool is an efficient algorithm for data segmentation implemented as part of Insight.Insight is a toolkit for the interactive, three-dimensional visualization and processing of large sets of atmospheric data, originally developed as a testing environment for the novel segmentation algorithm. It provides a dynamic system for combining at runtime data from different sources, a variety of different data processing algorithms, and several visualization techniques. Its modular architecture and flexible scripting support led to additional applications of the software, from which two examples are presented: the usage of Insight as a WMS (web map service) server, and the automatic production of a sequence of images for the visualization of cyclone simulations. The core application of Insight is the provision of the novel segmentation algorithm for the efficient detection and tracking of 3D features in large sets of atmospheric data, as well as for the precise localization of the occurring genesis, lysis, merging and splitting events. Data segmentation usually leads to a significant reduction of the size of the considered data. This enables a practical visualization of the data, statistical analyses of the features and their events, and the manual or automatic detection of interesting situations for subsequent detailed investigation. The concepts of the novel algorithm, its technical realization, and several extensions for avoiding under- and over-segmentation are discussed. As example applications, this thesis covers the setup and the results of the segmentation of upper-tropospheric jet streams and cyclones as full 3D objects. Finally, IWAL is presented, which is a web application for providing an easy interactive access to meteorological data visualizations, primarily aimed at students. As a web application, the needs to retrieve all input data sets and to install and handle complex visualization tools on a local machine are avoided. The main challenge in the provision of customizable visualizations to large numbers of simultaneous users was to find an acceptable trade-off between the available visualization options and the performance of the application. Besides the implementational details, benchmarks and the results of a user survey are presented.
Resumo:
Im Bereich sicherheitsrelevanter eingebetteter Systeme stellt sich der Designprozess von Anwendungen als sehr komplex dar. Entsprechend einer gegebenen Hardwarearchitektur lassen sich Steuergeräte aufrüsten, um alle bestehenden Prozesse und Signale pünktlich auszuführen. Die zeitlichen Anforderungen sind strikt und müssen in jeder periodischen Wiederkehr der Prozesse erfüllt sein, da die Sicherstellung der parallelen Ausführung von größter Bedeutung ist. Existierende Ansätze können schnell Designalternativen berechnen, aber sie gewährleisten nicht, dass die Kosten für die nötigen Hardwareänderungen minimal sind. Wir stellen einen Ansatz vor, der kostenminimale Lösungen für das Problem berechnet, die alle zeitlichen Bedingungen erfüllen. Unser Algorithmus verwendet Lineare Programmierung mit Spaltengenerierung, eingebettet in eine Baumstruktur, um untere und obere Schranken während des Optimierungsprozesses bereitzustellen. Die komplexen Randbedingungen zur Gewährleistung der periodischen Ausführung verlagern sich durch eine Zerlegung des Hauptproblems in unabhängige Unterprobleme, die als ganzzahlige lineare Programme formuliert sind. Sowohl die Analysen zur Prozessausführung als auch die Methoden zur Signalübertragung werden untersucht und linearisierte Darstellungen angegeben. Des Weiteren präsentieren wir eine neue Formulierung für die Ausführung mit fixierten Prioritäten, die zusätzlich Prozessantwortzeiten im schlimmsten anzunehmenden Fall berechnet, welche für Szenarien nötig sind, in denen zeitliche Bedingungen an Teilmengen von Prozessen und Signalen gegeben sind. Wir weisen die Anwendbarkeit unserer Methoden durch die Analyse von Instanzen nach, welche Prozessstrukturen aus realen Anwendungen enthalten. Unsere Ergebnisse zeigen, dass untere Schranken schnell berechnet werden können, um die Optimalität von heuristischen Lösungen zu beweisen. Wenn wir optimale Lösungen mit Antwortzeiten liefern, stellt sich unsere neue Formulierung in der Laufzeitanalyse vorteilhaft gegenüber anderen Ansätzen dar. Die besten Resultate werden mit einem hybriden Ansatz erzielt, der heuristische Startlösungen, eine Vorverarbeitung und eine heuristische mit einer kurzen nachfolgenden exakten Berechnungsphase verbindet.
Resumo:
In vielen Industriezweigen, zum Beispiel in der Automobilindustrie, werden Digitale Versuchsmodelle (Digital MockUps) eingesetzt, um die Konstruktion und die Funktion eines Produkts am virtuellen Prototypen zu überprüfen. Ein Anwendungsfall ist dabei die Überprüfung von Sicherheitsabständen einzelner Bauteile, die sogenannte Abstandsanalyse. Ingenieure ermitteln dabei für bestimmte Bauteile, ob diese in ihrer Ruhelage sowie während einer Bewegung einen vorgegeben Sicherheitsabstand zu den umgebenden Bauteilen einhalten. Unterschreiten Bauteile den Sicherheitsabstand, so muss deren Form oder Lage verändert werden. Dazu ist es wichtig, die Bereiche der Bauteile, welche den Sicherhabstand verletzen, genau zu kennen. rnrnIn dieser Arbeit präsentieren wir eine Lösung zur Echtzeitberechnung aller den Sicherheitsabstand unterschreitenden Bereiche zwischen zwei geometrischen Objekten. Die Objekte sind dabei jeweils als Menge von Primitiven (z.B. Dreiecken) gegeben. Für jeden Zeitpunkt, in dem eine Transformation auf eines der Objekte angewendet wird, berechnen wir die Menge aller den Sicherheitsabstand unterschreitenden Primitive und bezeichnen diese als die Menge aller toleranzverletzenden Primitive. Wir präsentieren in dieser Arbeit eine ganzheitliche Lösung, welche sich in die folgenden drei großen Themengebiete unterteilen lässt.rnrnIm ersten Teil dieser Arbeit untersuchen wir Algorithmen, die für zwei Dreiecke überprüfen, ob diese toleranzverletzend sind. Hierfür präsentieren wir verschiedene Ansätze für Dreiecks-Dreiecks Toleranztests und zeigen, dass spezielle Toleranztests deutlich performanter sind als bisher verwendete Abstandsberechnungen. Im Fokus unserer Arbeit steht dabei die Entwicklung eines neuartigen Toleranztests, welcher im Dualraum arbeitet. In all unseren Benchmarks zur Berechnung aller toleranzverletzenden Primitive beweist sich unser Ansatz im dualen Raum immer als der Performanteste.rnrnDer zweite Teil dieser Arbeit befasst sich mit Datenstrukturen und Algorithmen zur Echtzeitberechnung aller toleranzverletzenden Primitive zwischen zwei geometrischen Objekten. Wir entwickeln eine kombinierte Datenstruktur, die sich aus einer flachen hierarchischen Datenstruktur und mehreren Uniform Grids zusammensetzt. Um effiziente Laufzeiten zu gewährleisten ist es vor allem wichtig, den geforderten Sicherheitsabstand sinnvoll im Design der Datenstrukturen und der Anfragealgorithmen zu beachten. Wir präsentieren hierzu Lösungen, die die Menge der zu testenden Paare von Primitiven schnell bestimmen. Darüber hinaus entwickeln wir Strategien, wie Primitive als toleranzverletzend erkannt werden können, ohne einen aufwändigen Primitiv-Primitiv Toleranztest zu berechnen. In unseren Benchmarks zeigen wir, dass wir mit unseren Lösungen in der Lage sind, in Echtzeit alle toleranzverletzenden Primitive zwischen zwei komplexen geometrischen Objekten, bestehend aus jeweils vielen hunderttausend Primitiven, zu berechnen. rnrnIm dritten Teil präsentieren wir eine neuartige, speicheroptimierte Datenstruktur zur Verwaltung der Zellinhalte der zuvor verwendeten Uniform Grids. Wir bezeichnen diese Datenstruktur als Shrubs. Bisherige Ansätze zur Speicheroptimierung von Uniform Grids beziehen sich vor allem auf Hashing Methoden. Diese reduzieren aber nicht den Speicherverbrauch der Zellinhalte. In unserem Anwendungsfall haben benachbarte Zellen oft ähnliche Inhalte. Unser Ansatz ist in der Lage, den Speicherbedarf der Zellinhalte eines Uniform Grids, basierend auf den redundanten Zellinhalten, verlustlos auf ein fünftel der bisherigen Größe zu komprimieren und zur Laufzeit zu dekomprimieren.rnrnAbschießend zeigen wir, wie unsere Lösung zur Berechnung aller toleranzverletzenden Primitive Anwendung in der Praxis finden kann. Neben der reinen Abstandsanalyse zeigen wir Anwendungen für verschiedene Problemstellungen der Pfadplanung.
Resumo:
The problem of re-sampling spatially distributed data organized into regular or irregular grids to finer or coarser resolution is a common task in data processing. This procedure is known as 'gridding' or 're-binning'. Depending on the quantity the data represents, the gridding-algorithm has to meet different requirements. For example, histogrammed physical quantities such as mass or energy have to be re-binned in order to conserve the overall integral. Moreover, if the quantity is positive definite, negative sampling values should be avoided. The gridding process requires a re-distribution of the original data set to a user-requested grid according to a distribution function. The distribution function can be determined on the basis of the given data by interpolation methods. In general, accurate interpolation with respect to multiple boundary conditions of heavily fluctuating data requires polynomial interpolation functions of second or even higher order. However, this may result in unrealistic deviations (overshoots or undershoots) of the interpolation function from the data. Accordingly, the re-sampled data may overestimate or underestimate the given data by a significant amount. The gridding-algorithm presented in this work was developed in order to overcome these problems. Instead of a straightforward interpolation of the given data using high-order polynomials, a parametrized Hermitian interpolation curve was used to approximate the integrated data set. A single parameter is determined by which the user can control the behavior of the interpolation function, i.e. the amount of overshoot and undershoot. Furthermore, it is shown how the algorithm can be extended to multidimensional grids. The algorithm was compared to commonly used gridding-algorithms using linear and cubic interpolation functions. It is shown that such interpolation functions may overestimate or underestimate the source data by about 10-20%, while the new algorithm can be tuned to significantly reduce these interpolation errors. The accuracy of the new algorithm was tested on a series of x-ray CT-images (head and neck, lung, pelvis). The new algorithm significantly improves the accuracy of the sampled images in terms of the mean square error and a quality index introduced by Wang and Bovik (2002 IEEE Signal Process. Lett. 9 81-4).
Resumo:
Applying location-focused data protection law within the context of a location-agnostic cloud computing framework is fraught with difficulties. While the Proposed EU Data Protection Regulation has introduced a lot of changes to the current data protection framework, the complexities of data processing in the cloud involve various layers and intermediaries of actors that have not been properly addressed. This leaves some gaps in the regulation when analyzed in cloud scenarios. This paper gives a brief overview of the relevant provisions of the regulation that will have an impact on cloud transactions and addresses the missing links. It is hoped that these loopholes will be reconsidered before the final version of the law is passed in order to avoid unintended consequences.
Resumo:
Many observed time series of the global radiosonde or PILOT networks exist as fragments distributed over different archives. Identifying and merging these fragments can enhance their value for studies on the three-dimensional spatial structure of climate change. The Comprehensive Historical Upper-Air Network (CHUAN version 1.7), which was substantially extended in 2013, and the Integrated Global Radiosonde Archive (IGRA) are the most important collections of upper-air measurements taken before 1958. CHUAN (tracked) balloon data start in 1900, with higher numbers from the late 1920s onward, whereas IGRA data start in 1937. However, a substantial fraction of those measurements have not been taken at synoptic times (preferably 00:00 or 12:00 GMT) and on altitude levels instead of standard pressure levels. To make them comparable with more recent data, the records have been brought to synoptic times and standard pressure levels using state-of-the-art interpolation techniques, employing geopotential information from the National Oceanic and Atmospheric Administration (NOAA) 20th Century Reanalysis (NOAA 20CR). From 1958 onward the European Re-Analysis archives (ERA-40 and ERA-Interim) available at the European Centre for Medium-Range Weather Forecasts (ECMWF) are the main data sources. These are easier to use, but pilot data still have to be interpolated to standard pressure levels. Fractions of the same records distributed over different archives have been merged, if necessary, taking care that the data remain traceable back to their original sources. If possible, station IDs assigned by the World Meteorological Organization (WMO) have been allocated to the station records. For some records which have never been identified by a WMO ID, a local ID above 100 000 has been assigned. The merged data set contains 37 wind records longer than 70 years and 139 temperature records longer than 60 years. It can be seen as a useful basis for further data processing steps, most notably homogenization and gridding, after which it should be a valuable resource for climatological studies. Homogeneity adjustments for wind using the NOAA-20CR as a reference are described in Ramella Pralungo and Haimberger (2014). Reliable homogeneity adjustments for temperature beyond 1958 using a surface-data-only reanalysis such as NOAA-20CR as a reference have yet to be created. All the archives and metadata files are available in ASCII and netCDF format in the PANGAEA archive
Resumo:
The article proposes granular computing as a theoretical, formal and methodological basis for the newly emerging research field of human–data interaction (HDI). We argue that the ability to represent and reason with information granules is a prerequisite for data legibility. As such, it allows for extending the research agenda of HDI to encompass the topic of collective intelligence amplification, which is seen as an opportunity of today’s increasingly pervasive computing environments. As an example of collective intelligence amplification in HDI, we introduce a collaborative urban planning use case in a cognitive city environment and show how an iterative process of user input and human-oriented automated data processing can support collective decision making. As a basis for automated human-oriented data processing, we use the spatial granular calculus of granular geometry.
Resumo:
Navigation of deep space probes is most commonly operated using the spacecraft Doppler tracking technique. Orbital parameters are determined from a series of repeated measurements of the frequency shift of a microwave carrier over a given integration time. Currently, both ESA and NASA operate antennas at several sites around the world to ensure the tracking of deep space probes. Just a small number of software packages are nowadays used to process Doppler observations. The Astronomical Institute of the University of Bern (AIUB) has recently started the development of Doppler data processing capabilities within the Bernese GNSS Software. This software has been extensively used for Precise Orbit Determination of Earth orbiting satellites using GPS data collected by on-board receivers and for subsequent determination of the Earth gravity field. In this paper, we present the currently achieved status of the Doppler data modeling and orbit determination capabilities in the Bernese GNSS Software using GRAIL data. In particular we will focus on the implemented orbit determination procedure used for the combined analysis of Doppler and intersatellite Ka-band data. We show that even at this earlier stage of the development we can achieve an accuracy of few mHz on two-way S-band Doppler observation and of 2 µm/s on KBRR data from the GRAIL primary mission phase.